select.go 45.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
package influxql

import (
	"errors"
	"fmt"
	"math"
	"sort"
	"time"
)

// SelectOptions are options that customize the select call.
type SelectOptions struct {
	// The lower bound for a select call.
	MinTime time.Time

	// The upper bound for a select call.
	MaxTime time.Time

	// Node to exclusively read from.
	// If zero, all nodes are used.
	NodeID uint64

	// An optional channel that, if closed, signals that the select should be
	// interrupted.
	InterruptCh <-chan struct{}

	// Maximum number of concurrent series.
	MaxSeriesN int
}

// Select executes stmt against ic and returns a list of iterators to stream from.
//
// Statements should have all rewriting performed before calling select(). This
// includes wildcard and source expansion.
func Select(stmt *SelectStatement, ic IteratorCreator, sopt *SelectOptions) ([]Iterator, error) {
	// Determine base options for iterators.
	opt, err := newIteratorOptionsStmt(stmt, sopt)
	if err != nil {
		return nil, err
	}
	return buildIterators(stmt, ic, opt)
}

func buildIterators(stmt *SelectStatement, ic IteratorCreator, opt IteratorOptions) ([]Iterator, error) {
	// Retrieve refs for each call and var ref.
	info := newSelectInfo(stmt)
	if len(info.calls) > 1 && len(info.refs) > 0 {
		return nil, errors.New("cannot select fields when selecting multiple aggregates")
	}

	// Determine auxiliary fields to be selected.
	opt.Aux = make([]VarRef, 0, len(info.refs))
	for ref := range info.refs {
		opt.Aux = append(opt.Aux, *ref)
	}
	sort.Sort(VarRefs(opt.Aux))

	// If there are multiple auxilary fields and no calls then construct an aux iterator.
	if len(info.calls) == 0 && len(info.refs) > 0 {
		return buildAuxIterators(stmt.Fields, ic, stmt.Sources, opt)
	}

	// Include auxiliary fields from top() and bottom()
	extraFields := 0
	for call := range info.calls {
		if call.Name == "top" || call.Name == "bottom" {
			for i := 1; i < len(call.Args)-1; i++ {
				ref := call.Args[i].(*VarRef)
				opt.Aux = append(opt.Aux, *ref)
				extraFields++
			}
		}
	}

	fields := stmt.Fields
	if extraFields > 0 {
		// Rebuild the list of fields if any extra fields are being implicitly added
		fields = make([]*Field, 0, len(stmt.Fields)+extraFields)
		for _, f := range stmt.Fields {
			fields = append(fields, f)
			switch expr := f.Expr.(type) {
			case *Call:
				if expr.Name == "top" || expr.Name == "bottom" {
					for i := 1; i < len(expr.Args)-1; i++ {
						fields = append(fields, &Field{Expr: expr.Args[i]})
					}
				}
			}
		}
	}

	// Determine if there is one call and it is a selector.
	selector := false
	if len(info.calls) == 1 {
		for call := range info.calls {
			selector = IsSelector(call)
		}
	}

	return buildFieldIterators(fields, ic, stmt.Sources, opt, selector)
}

// buildAuxIterators creates a set of iterators from a single combined auxiliary iterator.
func buildAuxIterators(fields Fields, ic IteratorCreator, sources Sources, opt IteratorOptions) ([]Iterator, error) {
	// Create the auxiliary iterators for each source.
	inputs := make([]Iterator, 0, len(sources))
	if err := func() error {
		for _, source := range sources {
			switch source := source.(type) {
			case *Measurement:
				input, err := ic.CreateIterator(source, opt)
				if err != nil {
					return err
				}
				inputs = append(inputs, input)
			case *SubQuery:
				fields := make([]*Field, 0, len(opt.Aux))
				indexes := make([]IteratorMap, len(opt.Aux))
				offset := 0
			AUX:
				for i, name := range opt.Aux {
					// Search through the fields to find one that matches this auxiliary field.
					var match *Field
				FIELDS:
					for _, f := range source.Statement.Fields {
						if f.Name() == name.Val {
							match = f
							break
						} else if call, ok := f.Expr.(*Call); ok && (call.Name == "top" || call.Name == "bottom") {
							// We may match one of the arguments in "top" or "bottom".
							if len(call.Args) > 2 {
								for j, arg := range call.Args[1 : len(call.Args)-1] {
									if arg, ok := arg.(*VarRef); ok && arg.Val == name.Val {
										match = f
										// Increment the offset since we are looking for the tag
										// associated with this value rather than the value itself.
										offset += j + 1
										break FIELDS
									}
								}
							}
						}
					}

					// Look within the dimensions and create a field if we find it.
					if match == nil {
						for _, d := range source.Statement.Dimensions {
							if d, ok := d.Expr.(*VarRef); ok && name.Val == d.Val {
								fields = append(fields, &Field{
									Expr: &VarRef{
										Val:  d.Val,
										Type: Tag,
									},
								})
								indexes[i] = TagMap(d.Val)
								continue AUX
							}
						}
					}

					// There is no field that matches this name so signal this
					// should be a nil iterator.
					if match == nil {
						match = &Field{Expr: (*nilLiteral)(nil)}
					}
					fields = append(fields, match)
					indexes[i] = FieldMap(len(fields) + offset - 1)
				}

				// Check if we need any selectors within the selected fields.
				// If we have an expression that relies on the selector, we
				// need to include that even if it isn't referenced directly.
				var selector *Field
				for _, f := range source.Statement.Fields {
					if IsSelector(f.Expr) {
						selector = f
						break
					}
				}

				// There is a selector in the inner query. Now check if we have that selector
				// in the constructed fields list.
				if selector != nil {
					hasSelector := false
					for _, f := range fields {
						if _, ok := f.Expr.(*Call); ok {
							hasSelector = true
							break
						}
					}

					if !hasSelector {
						// Append the selector to the statement fields.
						fields = append(fields, selector)
					}
				}

				// If there are no fields, then we have nothing driving the iterator.
				// Skip this subquery since it only references tags.
				if len(fields) == 0 {
					continue
				}

				// Clone the statement and replace the fields with our custom ordering.
				stmt := source.Statement.Clone()
				stmt.Fields = fields

				subOpt, err := newIteratorOptionsSubstatement(stmt, opt)
				if err != nil {
					return err
				}

				itrs, err := buildIterators(stmt, ic, subOpt)
				if err != nil {
					return err
				}

				// Construct the iterators for the subquery.
				input := NewIteratorMapper(itrs, indexes, opt)
				// If there is a condition, filter it now.
				if opt.Condition != nil {
					input = NewFilterIterator(input, opt.Condition, opt)
				}
				inputs = append(inputs, input)
			}
		}
		return nil
	}(); err != nil {
		Iterators(inputs).Close()
		return nil, err
	}

	// Merge iterators to read auxilary fields.
	input, err := Iterators(inputs).Merge(opt)
	if err != nil {
		Iterators(inputs).Close()
		return nil, err
	} else if input == nil {
		input = &nilFloatIterator{}
	}

	// Filter out duplicate rows, if required.
	if opt.Dedupe {
		// If there is no group by and it is a float iterator, see if we can use a fast dedupe.
		if itr, ok := input.(FloatIterator); ok && len(opt.Dimensions) == 0 {
			if sz := len(fields); sz > 0 && sz < 3 {
				input = newFloatFastDedupeIterator(itr)
			} else {
				input = NewDedupeIterator(itr)
			}
		} else {
			input = NewDedupeIterator(input)
		}
	}

	// Apply limit & offset.
	if opt.Limit > 0 || opt.Offset > 0 {
		input = NewLimitIterator(input, opt)
	}

	// Wrap in an auxiliary iterator to separate the fields.
	aitr := NewAuxIterator(input, opt)

	// Generate iterators for each field.
	itrs := make([]Iterator, len(fields))
	if err := func() error {
		for i, f := range fields {
			expr := Reduce(f.Expr, nil)
			itr, err := buildAuxIterator(expr, aitr, opt)
			if err != nil {
				return err
			}
			itrs[i] = itr
		}
		return nil
	}(); err != nil {
		Iterators(Iterators(itrs).filterNonNil()).Close()
		aitr.Close()
		return nil, err
	}

	// Background the primary iterator since there is no reader for it.
	aitr.Background()

	return itrs, nil
}

// buildAuxIterator constructs an Iterator for an expression from an AuxIterator.
func buildAuxIterator(expr Expr, aitr AuxIterator, opt IteratorOptions) (Iterator, error) {
	switch expr := expr.(type) {
	case *VarRef:
		return aitr.Iterator(expr.Val, expr.Type), nil
	case *BinaryExpr:
		if rhs, ok := expr.RHS.(Literal); ok {
			// The right hand side is a literal. It is more common to have the RHS be a literal,
			// so we check that one first and have this be the happy path.
			if lhs, ok := expr.LHS.(Literal); ok {
				// We have two literals that couldn't be combined by Reduce.
				return nil, fmt.Errorf("unable to construct an iterator from two literals: LHS: %T, RHS: %T", lhs, rhs)
			}

			lhs, err := buildAuxIterator(expr.LHS, aitr, opt)
			if err != nil {
				return nil, err
			}
			return buildRHSTransformIterator(lhs, rhs, expr.Op, opt)
		} else if lhs, ok := expr.LHS.(Literal); ok {
			rhs, err := buildAuxIterator(expr.RHS, aitr, opt)
			if err != nil {
				return nil, err
			}
			return buildLHSTransformIterator(lhs, rhs, expr.Op, opt)
		} else {
			// We have two iterators. Combine them into a single iterator.
			lhs, err := buildAuxIterator(expr.LHS, aitr, opt)
			if err != nil {
				return nil, err
			}
			rhs, err := buildAuxIterator(expr.RHS, aitr, opt)
			if err != nil {
				return nil, err
			}
			return buildTransformIterator(lhs, rhs, expr.Op, opt)
		}
	case *ParenExpr:
		return buildAuxIterator(expr.Expr, aitr, opt)
	case *nilLiteral:
		return &nilFloatIterator{}, nil
	default:
		return nil, fmt.Errorf("invalid expression type: %T", expr)
	}
}

// buildFieldIterators creates an iterator for each field expression.
func buildFieldIterators(fields Fields, ic IteratorCreator, sources Sources, opt IteratorOptions, selector bool) ([]Iterator, error) {
	// Create iterators from fields against the iterator creator.
	itrs := make([]Iterator, len(fields))

	if err := func() error {
		hasAuxFields := false

		var input Iterator
		for i, f := range fields {
			// Build iterators for calls first and save the iterator.
			// We do this so we can keep the ordering provided by the user, but
			// still build the Call's iterator first.
			if ContainsVarRef(f.Expr) {
				hasAuxFields = true
				continue
			}

			expr := Reduce(f.Expr, nil)
			itr, err := buildExprIterator(expr, ic, sources, opt, selector)
			if err != nil {
				return err
			} else if itr == nil {
				itr = &nilFloatIterator{}
			}
			itrs[i] = itr
			input = itr
		}

		if input == nil || !hasAuxFields {
			return nil
		}

		// Build the aux iterators. Previous validation should ensure that only one
		// call was present so we build an AuxIterator from that input.
		aitr := NewAuxIterator(input, opt)
		for i, f := range fields {
			if itrs[i] != nil {
				itrs[i] = aitr
				continue
			}

			expr := Reduce(f.Expr, nil)
			itr, err := buildAuxIterator(expr, aitr, opt)
			if err != nil {
				return err
			} else if itr == nil {
				itr = &nilFloatIterator{}
			}
			itrs[i] = itr
		}
		aitr.Start()
		return nil

	}(); err != nil {
		Iterators(Iterators(itrs).filterNonNil()).Close()
		return nil, err
	}

	// If there is a limit or offset then apply it.
	if opt.Limit > 0 || opt.Offset > 0 {
		for i := range itrs {
			itrs[i] = NewLimitIterator(itrs[i], opt)
		}
	}

	return itrs, nil
}

// buildExprIterator creates an iterator for an expression.
func buildExprIterator(expr Expr, ic IteratorCreator, sources Sources, opt IteratorOptions, selector bool) (Iterator, error) {
	opt.Expr = expr
	b := exprIteratorBuilder{
		ic:       ic,
		sources:  sources,
		opt:      opt,
		selector: selector,
	}

	switch expr := expr.(type) {
	case *VarRef:
		return b.buildVarRefIterator(expr)
	case *Call:
		return b.buildCallIterator(expr)
	case *BinaryExpr:
		return b.buildBinaryExprIterator(expr)
	case *ParenExpr:
		return buildExprIterator(expr.Expr, ic, sources, opt, selector)
	case *nilLiteral:
		return &nilFloatIterator{}, nil
	default:
		return nil, fmt.Errorf("invalid expression type: %T", expr)
	}
}

type exprIteratorBuilder struct {
	ic       IteratorCreator
	sources  Sources
	opt      IteratorOptions
	selector bool
}

func (b *exprIteratorBuilder) buildVarRefIterator(expr *VarRef) (Iterator, error) {
	inputs := make([]Iterator, 0, len(b.sources))
	if err := func() error {
		for _, source := range b.sources {
			switch source := source.(type) {
			case *Measurement:
				input, err := b.ic.CreateIterator(source, b.opt)
				if err != nil {
					return err
				}
				inputs = append(inputs, input)
			case *SubQuery:
				info := newSelectInfo(source.Statement)
				if len(info.calls) > 1 && len(info.refs) > 0 {
					return errors.New("cannot select fields when selecting multiple aggregates from subquery")
				}

				if input, err := func() (Iterator, error) {
					// Look for the field that matches this name.
					i, e := source.Statement.FieldExprByName(expr.Val)
					if e == nil {
						return nil, nil
					}
					f := source.Statement.Fields[i]

					// Retrieve the select info for the substatement.
					info := newSelectInfo(source.Statement)
					if len(info.calls) == 0 && len(info.refs) > 0 {
						// There are no aggregates in the subquery, so
						// it is just a raw query. Match the auxiliary
						// fields to the other fields and pass as-is.
						subOpt, err := newIteratorOptionsSubstatement(source.Statement, b.opt)
						if err != nil {
							return nil, err
						}

						subOpt.Aux = make([]VarRef, len(b.opt.Aux))
						for i, ref := range b.opt.Aux {
							if ref.Type != Tag {
								for _, f := range source.Statement.Fields {
									if f.Name() == ref.Val {
										subOpt.Aux[i] = *(e.(*VarRef))
										break
									}
								}
							}

							// Look in the dimensions.
							if subOpt.Aux[i].Val == "" && (ref.Type == Unknown || ref.Type == Tag) {
								for _, d := range source.Statement.Dimensions {
									if d, ok := d.Expr.(*VarRef); ok && ref.Val == d.Val {
										subOpt.Aux[i] = VarRef{
											Val:  d.Val,
											Type: Tag,
										}
										break
									}
								}
							}
						}
						itr, err := buildExprIterator(e, b.ic, source.Statement.Sources, subOpt, false)
						if err != nil {
							return nil, err
						}

						if b.opt.Condition != nil {
							itr = NewFilterIterator(itr, b.opt.Condition, subOpt)
						}
						return itr, nil
					}

					// Reduce the expression to remove parenthesis.
					e = Reduce(e, nil)

					switch e := e.(type) {
					case *VarRef:
						// If the field we selected is a variable
						// reference, then we need to find the associated
						// selector (and ensure it is actually a selector)
						// and build the iterator off of that.
						selector := info.FindSelector()
						if selector == nil {
							return nil, nil
						}

						subOpt, err := newIteratorOptionsSubstatement(source.Statement, b.opt)
						if err != nil {
							return nil, err
						}

						// If we have top() or bottom(), we need to
						// fill the aux fields with what is in the
						// function even if we aren't using the result.
						if call, ok := f.Expr.(*Call); ok && (call.Name == "top" || call.Name == "bottom") {
							// Prepare the auxiliary fields for this call.
							subOpt.Aux = make([]VarRef, 0, len(call.Args)-1)

							// Look for the auxiliary field inside of the call.
							// If we can't find it, then add it to the end.
							hasVarRef := false
							for _, arg := range call.Args[1 : len(call.Args)-1] {
								if arg, ok := arg.(*VarRef); ok {
									subOpt.Aux = append(subOpt.Aux, *arg)
									if arg.Val == e.Val {
										hasVarRef = true
									}
								}
							}

							// We need to attach the actual auxiliary field we're looking
							// for if it wasn't in the argument list.
							// This is for SELECT top(value, 1), host.
							if !hasVarRef {
								subOpt.Aux = append(subOpt.Aux, *e)
							}
						} else {
							subOpt.Aux = []VarRef{*e}
						}

						// Construct the selector iterator.
						input, err := buildExprIterator(selector, b.ic, source.Statement.Sources, subOpt, true)
						if err != nil {
							return nil, err
						}

						// Filter the iterator.
						if b.opt.Condition != nil {
							input = NewFilterIterator(input, b.opt.Condition, subOpt)
						}

						// Create an auxiliary iterator.
						aitr := NewAuxIterator(input, subOpt)
						itr := aitr.Iterator(e.Val, e.Type)
						aitr.Background()
						return itr, nil
					case *Call:
						subOpt, err := newIteratorOptionsSubstatement(source.Statement, b.opt)
						if err != nil {
							return nil, err
						}

						if len(b.opt.Aux) > 0 {
							subOpt.Aux = make([]VarRef, len(b.opt.Aux))
							for i, ref := range b.opt.Aux {
								_, expr := source.Statement.FieldExprByName(ref.Val)
								if expr != nil {
									v, ok := expr.(*VarRef)
									if ok {
										subOpt.Aux[i] = *v
										continue
									}
								}

								if ref.Type == Unknown || ref.Type == Tag {
									for _, d := range source.Statement.Dimensions {
										if d, ok := d.Expr.(*VarRef); ok && ref.Val == d.Val {
											subOpt.Aux[i] = VarRef{
												Val:  d.Val,
												Type: Tag,
											}
											break
										}
									}
								}
							}
						}

						// Check if this is a selector or not and
						// create the iterator directly.
						selector := len(info.calls) == 1 && IsSelector(e)
						itr, err := buildExprIterator(e, b.ic, source.Statement.Sources, subOpt, selector)
						if err != nil {
							return nil, err
						}

						if b.opt.Condition != nil {
							itr = NewFilterIterator(itr, b.opt.Condition, subOpt)
						}
						return itr, nil
					case *BinaryExpr:
						// Retrieve the calls and references for this binary expression.
						// There should be no mixing of calls and refs.
						i := selectInfo{
							calls: make(map[*Call]struct{}),
							refs:  make(map[*VarRef]struct{}),
						}
						Walk(&i, e)

						opt, err := newIteratorOptionsSubstatement(source.Statement, b.opt)
						if err != nil {
							return nil, err
						}

						if len(i.refs) > 0 {
							if len(b.opt.Aux) > 0 {
								// Catch this so we don't cause a panic. This
								// is too difficult to implement now though.
								// TODO(jsternberg): Implement this.
								return nil, errors.New("unsupported")
							}

							selector := info.FindSelector()
							if selector == nil {
								return nil, nil
							}

							// Prepare the auxiliary iterators with the refs we care about.
							opt.Aux = make([]VarRef, 0, len(i.refs))
							for ref := range i.refs {
								opt.Aux = append(opt.Aux, *ref)
							}

							input, err := buildExprIterator(selector, b.ic, source.Statement.Sources, opt, true)
							if err != nil {
								return nil, err
							}

							aitr := NewAuxIterator(input, opt)
							itr, err := buildAuxIterator(e, aitr, opt)
							if err != nil {
								aitr.Close()
								return nil, err
							}
							aitr.Background()
							return itr, nil
						}

						// Determine if this expression is a selector or not.
						selector := len(i.calls) == 1 && len(info.calls) == 1
						// Prepare the auxiliary fields we need.
						if len(b.opt.Aux) > 0 {
							opt.Aux = make([]VarRef, len(b.opt.Aux))
							for i, ref := range b.opt.Aux {
								_, expr := source.Statement.FieldExprByName(ref.Val)
								if v, ok := expr.(*VarRef); ok {
									opt.Aux[i] = *v
								}
							}
						}

						// Build the iterator using the options we created.
						return buildExprIterator(e, b.ic, source.Statement.Sources, opt, selector)
					default:
						panic(fmt.Sprintf("unsupported use of %T in a subquery", e))
					}
				}(); err != nil {
					return err
				} else if input != nil {
					inputs = append(inputs, input)
				}
			}
		}
		return nil
	}(); err != nil {
		Iterators(inputs).Close()
		return nil, err
	}

	// Variable references in this section will always go into some call
	// iterator. Combine it with a merge iterator.
	itr := NewMergeIterator(inputs, b.opt)
	if itr == nil {
		itr = &nilFloatIterator{}
	}

	if b.opt.InterruptCh != nil {
		itr = NewInterruptIterator(itr, b.opt.InterruptCh)
	}
	return itr, nil
}

func (b *exprIteratorBuilder) buildCallIterator(expr *Call) (Iterator, error) {
	// TODO(jsternberg): Refactor this. This section needs to die in a fire.
	switch expr.Name {
	case "distinct":
		opt := b.opt
		opt.Ordered = true
		input, err := buildExprIterator(expr.Args[0].(*VarRef), b.ic, b.sources, opt, b.selector)
		if err != nil {
			return nil, err
		}
		input, err = NewDistinctIterator(input, opt)
		if err != nil {
			return nil, err
		}
		return NewIntervalIterator(input, opt), nil
	case "sample":
		opt := b.opt
		opt.Ordered = true
		input, err := buildExprIterator(expr.Args[0], b.ic, b.sources, opt, b.selector)
		if err != nil {
			return nil, err
		}
		size := expr.Args[1].(*IntegerLiteral)

		return newSampleIterator(input, opt, int(size.Val))
	case "holt_winters", "holt_winters_with_fit":
		opt := b.opt
		opt.Ordered = true
		input, err := buildExprIterator(expr.Args[0], b.ic, b.sources, opt, b.selector)
		if err != nil {
			return nil, err
		}
		h := expr.Args[1].(*IntegerLiteral)
		m := expr.Args[2].(*IntegerLiteral)

		includeFitData := "holt_winters_with_fit" == expr.Name

		interval := b.opt.Interval.Duration
		// Redefine interval to be unbounded to capture all aggregate results
		opt.StartTime = MinTime
		opt.EndTime = MaxTime
		opt.Interval = Interval{}

		return newHoltWintersIterator(input, opt, int(h.Val), int(m.Val), includeFitData, interval)
	case "derivative", "non_negative_derivative", "difference", "non_negative_difference", "moving_average", "elapsed":
		opt := b.opt
		if !opt.Interval.IsZero() {
			if opt.Ascending {
				opt.StartTime -= int64(opt.Interval.Duration)
			} else {
				opt.EndTime += int64(opt.Interval.Duration)
			}
		}
		opt.Ordered = true

		input, err := buildExprIterator(expr.Args[0], b.ic, b.sources, opt, b.selector)
		if err != nil {
			return nil, err
		}

		switch expr.Name {
		case "derivative", "non_negative_derivative":
			interval := opt.DerivativeInterval()
			isNonNegative := (expr.Name == "non_negative_derivative")
			return newDerivativeIterator(input, opt, interval, isNonNegative)
		case "elapsed":
			interval := opt.ElapsedInterval()
			return newElapsedIterator(input, opt, interval)
		case "difference", "non_negative_difference":
			isNonNegative := (expr.Name == "non_negative_difference")
			return newDifferenceIterator(input, opt, isNonNegative)
		case "moving_average":
			n := expr.Args[1].(*IntegerLiteral)
			if n.Val > 1 && !b.opt.Interval.IsZero() {
				if opt.Ascending {
					opt.StartTime -= int64(opt.Interval.Duration) * (n.Val - 1)
				} else {
					opt.EndTime += int64(opt.Interval.Duration) * (n.Val - 1)
				}
			}
			return newMovingAverageIterator(input, int(n.Val), opt)
		}
		panic(fmt.Sprintf("invalid series aggregate function: %s", expr.Name))
	case "cumulative_sum":
		opt := b.opt
		opt.Ordered = true
		input, err := buildExprIterator(expr.Args[0], b.ic, b.sources, opt, b.selector)
		if err != nil {
			return nil, err
		}
		return newCumulativeSumIterator(input, opt)
	case "integral":
		opt := b.opt
		opt.Ordered = true
		input, err := buildExprIterator(expr.Args[0].(*VarRef), b.ic, b.sources, opt, false)
		if err != nil {
			return nil, err
		}
		interval := opt.IntegralInterval()
		return newIntegralIterator(input, opt, interval)
	}

	itr, err := func() (Iterator, error) {
		switch expr.Name {
		case "count":
			switch arg0 := expr.Args[0].(type) {
			case *Call:
				if arg0.Name == "distinct" {
					input, err := buildExprIterator(arg0, b.ic, b.sources, b.opt, b.selector)
					if err != nil {
						return nil, err
					}
					return newCountIterator(input, b.opt)
				}
			}
			fallthrough
		case "min", "max", "sum", "first", "last", "mean":
			inputs := make([]Iterator, 0, len(b.sources))
			if err := func() error {
				for _, source := range b.sources {
					switch source := source.(type) {
					case *Measurement:
						input, err := b.ic.CreateIterator(source, b.opt)
						if err != nil {
							return err
						}
						inputs = append(inputs, input)
					case *SubQuery:
						// Identify the name of the field we are using.
						arg0 := expr.Args[0].(*VarRef)

						input, err := buildExprIterator(arg0, b.ic, []Source{source}, b.opt, b.selector)
						if err != nil {
							return err
						}

						if b.opt.Condition != nil {
							input = NewFilterIterator(input, b.opt.Condition, b.opt)
						}

						// Wrap the result in a call iterator.
						i, err := NewCallIterator(input, b.opt)
						if err != nil {
							input.Close()
							return err
						}
						inputs = append(inputs, i)
					}
				}
				return nil
			}(); err != nil {
				Iterators(inputs).Close()
				return nil, err
			}

			itr, err := Iterators(inputs).Merge(b.opt)
			if err != nil {
				Iterators(inputs).Close()
				return nil, err
			} else if itr == nil {
				itr = &nilFloatIterator{}
			}
			return itr, nil
		case "median":
			opt := b.opt
			opt.Ordered = true
			input, err := buildExprIterator(expr.Args[0].(*VarRef), b.ic, b.sources, opt, false)
			if err != nil {
				return nil, err
			}
			return newMedianIterator(input, opt)
		case "mode":
			input, err := buildExprIterator(expr.Args[0].(*VarRef), b.ic, b.sources, b.opt, false)
			if err != nil {
				return nil, err
			}
			return NewModeIterator(input, b.opt)
		case "stddev":
			input, err := buildExprIterator(expr.Args[0].(*VarRef), b.ic, b.sources, b.opt, false)
			if err != nil {
				return nil, err
			}
			return newStddevIterator(input, b.opt)
		case "spread":
			// OPTIMIZE(benbjohnson): convert to map/reduce
			input, err := buildExprIterator(expr.Args[0].(*VarRef), b.ic, b.sources, b.opt, false)
			if err != nil {
				return nil, err
			}
			return newSpreadIterator(input, b.opt)
		case "top":
			var tags []int
			if len(expr.Args) < 2 {
				return nil, fmt.Errorf("top() requires 2 or more arguments, got %d", len(expr.Args))
			} else if len(expr.Args) > 2 {
				// We need to find the indices of where the tag values are stored in Aux
				// This section is O(n^2), but for what should be a low value.
				for i := 1; i < len(expr.Args)-1; i++ {
					ref := expr.Args[i].(*VarRef)
					for index, aux := range b.opt.Aux {
						if aux.Val == ref.Val {
							tags = append(tags, index)
							break
						}
					}
				}
			}

			opt := b.opt
			opt.Ordered = true
			input, err := buildExprIterator(expr.Args[0].(*VarRef), b.ic, b.sources, opt, false)
			if err != nil {
				return nil, err
			}
			n := expr.Args[len(expr.Args)-1].(*IntegerLiteral)
			return newTopIterator(input, opt, n, tags)
		case "bottom":
			var tags []int
			if len(expr.Args) < 2 {
				return nil, fmt.Errorf("bottom() requires 2 or more arguments, got %d", len(expr.Args))
			} else if len(expr.Args) > 2 {
				// We need to find the indices of where the tag values are stored in Aux
				// This section is O(n^2), but for what should be a low value.
				for i := 1; i < len(expr.Args)-1; i++ {
					ref := expr.Args[i].(*VarRef)
					for index, aux := range b.opt.Aux {
						if aux.Val == ref.Val {
							tags = append(tags, index)
							break
						}
					}
				}
			}

			opt := b.opt
			opt.Ordered = true
			input, err := buildExprIterator(expr.Args[0].(*VarRef), b.ic, b.sources, opt, false)
			if err != nil {
				return nil, err
			}
			n := expr.Args[len(expr.Args)-1].(*IntegerLiteral)
			return newBottomIterator(input, b.opt, n, tags)
		case "percentile":
			opt := b.opt
			opt.Ordered = true
			input, err := buildExprIterator(expr.Args[0].(*VarRef), b.ic, b.sources, opt, false)
			if err != nil {
				return nil, err
			}
			var percentile float64
			switch arg := expr.Args[1].(type) {
			case *NumberLiteral:
				percentile = arg.Val
			case *IntegerLiteral:
				percentile = float64(arg.Val)
			}
			return newPercentileIterator(input, opt, percentile)
		default:
			return nil, fmt.Errorf("unsupported call: %s", expr.Name)
		}
	}()

	if err != nil {
		return nil, err
	}

	if !b.selector || !b.opt.Interval.IsZero() {
		if expr.Name != "top" && expr.Name != "bottom" {
			itr = NewIntervalIterator(itr, b.opt)
		}
		if !b.opt.Interval.IsZero() && b.opt.Fill != NoFill {
			itr = NewFillIterator(itr, expr, b.opt)
		}
	}
	if b.opt.InterruptCh != nil {
		itr = NewInterruptIterator(itr, b.opt.InterruptCh)
	}
	return itr, nil
}

func (b *exprIteratorBuilder) buildBinaryExprIterator(expr *BinaryExpr) (Iterator, error) {
	if rhs, ok := expr.RHS.(Literal); ok {
		// The right hand side is a literal. It is more common to have the RHS be a literal,
		// so we check that one first and have this be the happy path.
		if lhs, ok := expr.LHS.(Literal); ok {
			// We have two literals that couldn't be combined by Reduce.
			return nil, fmt.Errorf("unable to construct an iterator from two literals: LHS: %T, RHS: %T", lhs, rhs)
		}

		lhs, err := buildExprIterator(expr.LHS, b.ic, b.sources, b.opt, b.selector)
		if err != nil {
			return nil, err
		}
		return buildRHSTransformIterator(lhs, rhs, expr.Op, b.opt)
	} else if lhs, ok := expr.LHS.(Literal); ok {
		rhs, err := buildExprIterator(expr.RHS, b.ic, b.sources, b.opt, b.selector)
		if err != nil {
			return nil, err
		}
		return buildLHSTransformIterator(lhs, rhs, expr.Op, b.opt)
	} else {
		// We have two iterators. Combine them into a single iterator.
		lhs, err := buildExprIterator(expr.LHS, b.ic, b.sources, b.opt, false)
		if err != nil {
			return nil, err
		}
		rhs, err := buildExprIterator(expr.RHS, b.ic, b.sources, b.opt, false)
		if err != nil {
			return nil, err
		}
		return buildTransformIterator(lhs, rhs, expr.Op, b.opt)
	}
}

func buildRHSTransformIterator(lhs Iterator, rhs Literal, op Token, opt IteratorOptions) (Iterator, error) {
	fn := binaryExprFunc(iteratorDataType(lhs), literalDataType(rhs), op)
	switch fn := fn.(type) {
	case func(float64, float64) float64:
		var input FloatIterator
		switch lhs := lhs.(type) {
		case FloatIterator:
			input = lhs
		case IntegerIterator:
			input = &integerFloatCastIterator{input: lhs}
		default:
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as a FloatIterator", lhs)
		}

		var val float64
		switch rhs := rhs.(type) {
		case *NumberLiteral:
			val = rhs.Val
		case *IntegerLiteral:
			val = float64(rhs.Val)
		default:
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as a NumberLiteral", rhs)
		}
		return &floatTransformIterator{
			input: input,
			fn: func(p *FloatPoint) *FloatPoint {
				if p == nil {
					return nil
				} else if p.Nil {
					return p
				}
				p.Value = fn(p.Value, val)
				return p
			},
		}, nil
	case func(int64, int64) float64:
		input, ok := lhs.(IntegerIterator)
		if !ok {
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as a IntegerIterator", lhs)
		}

		var val int64
		switch rhs := rhs.(type) {
		case *IntegerLiteral:
			val = rhs.Val
		default:
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as a IntegerLiteral", rhs)
		}
		return &integerFloatTransformIterator{
			input: input,
			fn: func(p *IntegerPoint) *FloatPoint {
				if p == nil {
					return nil
				}

				fp := &FloatPoint{
					Name: p.Name,
					Tags: p.Tags,
					Time: p.Time,
					Aux:  p.Aux,
				}
				if p.Nil {
					fp.Nil = true
				} else {
					fp.Value = fn(p.Value, val)
				}
				return fp
			},
		}, nil
	case func(float64, float64) bool:
		var input FloatIterator
		switch lhs := lhs.(type) {
		case FloatIterator:
			input = lhs
		case IntegerIterator:
			input = &integerFloatCastIterator{input: lhs}
		default:
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as a FloatIterator", lhs)
		}

		var val float64
		switch rhs := rhs.(type) {
		case *NumberLiteral:
			val = rhs.Val
		case *IntegerLiteral:
			val = float64(rhs.Val)
		default:
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as a NumberLiteral", rhs)
		}
		return &floatBoolTransformIterator{
			input: input,
			fn: func(p *FloatPoint) *BooleanPoint {
				if p == nil {
					return nil
				}

				bp := &BooleanPoint{
					Name: p.Name,
					Tags: p.Tags,
					Time: p.Time,
					Aux:  p.Aux,
				}
				if p.Nil {
					bp.Nil = true
				} else {
					bp.Value = fn(p.Value, val)
				}
				return bp
			},
		}, nil
	case func(int64, int64) int64:
		var input IntegerIterator
		switch lhs := lhs.(type) {
		case IntegerIterator:
			input = lhs
		default:
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as an IntegerIterator", lhs)
		}

		var val int64
		switch rhs := rhs.(type) {
		case *IntegerLiteral:
			val = rhs.Val
		default:
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as an IntegerLiteral", rhs)
		}
		return &integerTransformIterator{
			input: input,
			fn: func(p *IntegerPoint) *IntegerPoint {
				if p == nil {
					return nil
				} else if p.Nil {
					return p
				}
				p.Value = fn(p.Value, val)
				return p
			},
		}, nil
	case func(int64, int64) bool:
		var input IntegerIterator
		switch lhs := lhs.(type) {
		case IntegerIterator:
			input = lhs
		default:
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as an IntegerIterator", lhs)
		}

		var val int64
		switch rhs := rhs.(type) {
		case *IntegerLiteral:
			val = rhs.Val
		default:
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as an IntegerLiteral", rhs)
		}
		return &integerBoolTransformIterator{
			input: input,
			fn: func(p *IntegerPoint) *BooleanPoint {
				if p == nil {
					return nil
				}

				bp := &BooleanPoint{
					Name: p.Name,
					Tags: p.Tags,
					Time: p.Time,
					Aux:  p.Aux,
				}
				if p.Nil {
					bp.Nil = true
				} else {
					bp.Value = fn(p.Value, val)
				}
				return bp
			},
		}, nil
	case func(bool, bool) bool:
		var input BooleanIterator
		switch lhs := lhs.(type) {
		case BooleanIterator:
			input = lhs
		default:
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as an BooleanIterator", lhs)
		}

		var val bool
		switch rhs := rhs.(type) {
		case *BooleanLiteral:
			val = rhs.Val
		default:
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as an BooleanLiteral", rhs)
		}
		return &booleanTransformIterator{
			input: input,
			fn: func(p *BooleanPoint) *BooleanPoint {
				if p == nil {
					return nil
				}

				bp := &BooleanPoint{
					Name: p.Name,
					Tags: p.Tags,
					Time: p.Time,
					Aux:  p.Aux,
				}
				if p.Nil {
					bp.Nil = true
				} else {
					bp.Value = fn(p.Value, val)
				}
				return bp
			},
		}, nil
	}
	return nil, fmt.Errorf("unable to construct rhs transform iterator from %T and %T", lhs, rhs)
}

func buildLHSTransformIterator(lhs Literal, rhs Iterator, op Token, opt IteratorOptions) (Iterator, error) {
	fn := binaryExprFunc(literalDataType(lhs), iteratorDataType(rhs), op)
	switch fn := fn.(type) {
	case func(float64, float64) float64:
		var input FloatIterator
		switch rhs := rhs.(type) {
		case FloatIterator:
			input = rhs
		case IntegerIterator:
			input = &integerFloatCastIterator{input: rhs}
		default:
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as a FloatIterator", rhs)
		}

		var val float64
		switch lhs := lhs.(type) {
		case *NumberLiteral:
			val = lhs.Val
		case *IntegerLiteral:
			val = float64(lhs.Val)
		default:
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as a NumberLiteral", lhs)
		}
		return &floatTransformIterator{
			input: input,
			fn: func(p *FloatPoint) *FloatPoint {
				if p == nil {
					return nil
				} else if p.Nil {
					return p
				}
				p.Value = fn(val, p.Value)
				return p
			},
		}, nil
	case func(int64, int64) float64:
		input, ok := rhs.(IntegerIterator)
		if !ok {
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as a IntegerIterator", lhs)
		}

		var val int64
		switch lhs := lhs.(type) {
		case *IntegerLiteral:
			val = lhs.Val
		default:
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as a IntegerLiteral", rhs)
		}
		return &integerFloatTransformIterator{
			input: input,
			fn: func(p *IntegerPoint) *FloatPoint {
				if p == nil {
					return nil
				}

				fp := &FloatPoint{
					Name: p.Name,
					Tags: p.Tags,
					Time: p.Time,
					Aux:  p.Aux,
				}
				if p.Nil {
					fp.Nil = true
				} else {
					fp.Value = fn(val, p.Value)
				}
				return fp
			},
		}, nil
	case func(float64, float64) bool:
		var input FloatIterator
		switch rhs := rhs.(type) {
		case FloatIterator:
			input = rhs
		case IntegerIterator:
			input = &integerFloatCastIterator{input: rhs}
		default:
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as a FloatIterator", rhs)
		}

		var val float64
		switch lhs := lhs.(type) {
		case *NumberLiteral:
			val = lhs.Val
		case *IntegerLiteral:
			val = float64(lhs.Val)
		default:
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as a NumberLiteral", lhs)
		}
		return &floatBoolTransformIterator{
			input: input,
			fn: func(p *FloatPoint) *BooleanPoint {
				if p == nil {
					return nil
				}

				bp := &BooleanPoint{
					Name: p.Name,
					Tags: p.Tags,
					Time: p.Time,
					Aux:  p.Aux,
				}
				if p.Nil {
					bp.Nil = true
				} else {
					bp.Value = fn(val, p.Value)
				}
				return bp
			},
		}, nil
	case func(int64, int64) int64:
		var input IntegerIterator
		switch rhs := rhs.(type) {
		case IntegerIterator:
			input = rhs
		default:
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as an IntegerIterator", rhs)
		}

		var val int64
		switch lhs := lhs.(type) {
		case *IntegerLiteral:
			val = lhs.Val
		default:
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as an IntegerLiteral", lhs)
		}
		return &integerTransformIterator{
			input: input,
			fn: func(p *IntegerPoint) *IntegerPoint {
				if p == nil {
					return nil
				} else if p.Nil {
					return p
				}
				p.Value = fn(val, p.Value)
				return p
			},
		}, nil
	case func(int64, int64) bool:
		var input IntegerIterator
		switch rhs := rhs.(type) {
		case IntegerIterator:
			input = rhs
		default:
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as an IntegerIterator", rhs)
		}

		var val int64
		switch lhs := lhs.(type) {
		case *IntegerLiteral:
			val = lhs.Val
		default:
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as an IntegerLiteral", lhs)
		}
		return &integerBoolTransformIterator{
			input: input,
			fn: func(p *IntegerPoint) *BooleanPoint {
				if p == nil {
					return nil
				}

				bp := &BooleanPoint{
					Name: p.Name,
					Tags: p.Tags,
					Time: p.Time,
					Aux:  p.Aux,
				}
				if p.Nil {
					bp.Nil = true
				} else {
					bp.Value = fn(val, p.Value)
				}
				return bp
			},
		}, nil
	case func(bool, bool) bool:
		var input BooleanIterator
		switch rhs := rhs.(type) {
		case BooleanIterator:
			input = rhs
		default:
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as an BooleanIterator", rhs)
		}

		var val bool
		switch lhs := lhs.(type) {
		case *BooleanLiteral:
			val = lhs.Val
		default:
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as a BooleanLiteral", lhs)
		}
		return &booleanTransformIterator{
			input: input,
			fn: func(p *BooleanPoint) *BooleanPoint {
				if p == nil {
					return nil
				}

				bp := &BooleanPoint{
					Name: p.Name,
					Tags: p.Tags,
					Time: p.Time,
					Aux:  p.Aux,
				}
				if p.Nil {
					bp.Nil = true
				} else {
					bp.Value = fn(val, p.Value)
				}
				return bp
			},
		}, nil
	}
	return nil, fmt.Errorf("unable to construct lhs transform iterator from %T and %T", lhs, rhs)
}

func buildTransformIterator(lhs Iterator, rhs Iterator, op Token, opt IteratorOptions) (Iterator, error) {
	fn := binaryExprFunc(iteratorDataType(lhs), iteratorDataType(rhs), op)
	switch fn := fn.(type) {
	case func(float64, float64) float64:
		var left FloatIterator
		switch lhs := lhs.(type) {
		case FloatIterator:
			left = lhs
		case IntegerIterator:
			left = &integerFloatCastIterator{input: lhs}
		default:
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as a FloatIterator", lhs)
		}

		var right FloatIterator
		switch rhs := rhs.(type) {
		case FloatIterator:
			right = rhs
		case IntegerIterator:
			right = &integerFloatCastIterator{input: rhs}
		default:
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as a FloatIterator", rhs)
		}
		return newFloatExprIterator(left, right, opt, fn), nil
	case func(int64, int64) float64:
		left, ok := lhs.(IntegerIterator)
		if !ok {
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as a IntegerIterator", lhs)
		}
		right, ok := rhs.(IntegerIterator)
		if !ok {
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as a IntegerIterator", rhs)
		}
		return newIntegerFloatExprIterator(left, right, opt, fn), nil
	case func(int64, int64) int64:
		left, ok := lhs.(IntegerIterator)
		if !ok {
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as a IntegerIterator", lhs)
		}
		right, ok := rhs.(IntegerIterator)
		if !ok {
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as a IntegerIterator", rhs)
		}
		return newIntegerExprIterator(left, right, opt, fn), nil
	case func(float64, float64) bool:
		var left FloatIterator
		switch lhs := lhs.(type) {
		case FloatIterator:
			left = lhs
		case IntegerIterator:
			left = &integerFloatCastIterator{input: lhs}
		default:
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as a FloatIterator", lhs)
		}

		var right FloatIterator
		switch rhs := rhs.(type) {
		case FloatIterator:
			right = rhs
		case IntegerIterator:
			right = &integerFloatCastIterator{input: rhs}
		default:
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as a FloatIterator", rhs)
		}
		return newFloatBooleanExprIterator(left, right, opt, fn), nil
	case func(int64, int64) bool:
		left, ok := lhs.(IntegerIterator)
		if !ok {
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as a IntegerIterator", lhs)
		}
		right, ok := rhs.(IntegerIterator)
		if !ok {
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as a IntegerIterator", rhs)
		}
		return newIntegerBooleanExprIterator(left, right, opt, fn), nil
	case func(bool, bool) bool:
		left, ok := lhs.(BooleanIterator)
		if !ok {
			return nil, fmt.Errorf("type mismatch on LHS, unable to use %T as a BooleanIterator", lhs)
		}
		right, ok := rhs.(BooleanIterator)
		if !ok {
			return nil, fmt.Errorf("type mismatch on RHS, unable to use %T as a BooleanIterator", rhs)
		}
		return newBooleanExprIterator(left, right, opt, fn), nil
	}
	return nil, fmt.Errorf("unable to construct transform iterator from %T and %T", lhs, rhs)
}

func iteratorDataType(itr Iterator) DataType {
	switch itr.(type) {
	case FloatIterator:
		return Float
	case IntegerIterator:
		return Integer
	case StringIterator:
		return String
	case BooleanIterator:
		return Boolean
	default:
		return Unknown
	}
}

func literalDataType(lit Literal) DataType {
	switch lit.(type) {
	case *NumberLiteral:
		return Float
	case *IntegerLiteral:
		return Integer
	case *StringLiteral:
		return String
	case *BooleanLiteral:
		return Boolean
	default:
		return Unknown
	}
}

func binaryExprFunc(typ1 DataType, typ2 DataType, op Token) interface{} {
	var fn interface{}
	switch typ1 {
	case Float:
		fn = floatBinaryExprFunc(op)
	case Integer:
		switch typ2 {
		case Float:
			fn = floatBinaryExprFunc(op)
		default:
			fn = integerBinaryExprFunc(op)
		}
	case Boolean:
		fn = booleanBinaryExprFunc(op)
	}
	return fn
}

func floatBinaryExprFunc(op Token) interface{} {
	switch op {
	case ADD:
		return func(lhs, rhs float64) float64 { return lhs + rhs }
	case SUB:
		return func(lhs, rhs float64) float64 { return lhs - rhs }
	case MUL:
		return func(lhs, rhs float64) float64 { return lhs * rhs }
	case DIV:
		return func(lhs, rhs float64) float64 {
			if rhs == 0 {
				return float64(0)
			}
			return lhs / rhs
		}
	case MOD:
		return func(lhs, rhs float64) float64 { return math.Mod(lhs, rhs) }
	case EQ:
		return func(lhs, rhs float64) bool { return lhs == rhs }
	case NEQ:
		return func(lhs, rhs float64) bool { return lhs != rhs }
	case LT:
		return func(lhs, rhs float64) bool { return lhs < rhs }
	case LTE:
		return func(lhs, rhs float64) bool { return lhs <= rhs }
	case GT:
		return func(lhs, rhs float64) bool { return lhs > rhs }
	case GTE:
		return func(lhs, rhs float64) bool { return lhs >= rhs }
	}
	return nil
}

func integerBinaryExprFunc(op Token) interface{} {
	switch op {
	case ADD:
		return func(lhs, rhs int64) int64 { return lhs + rhs }
	case SUB:
		return func(lhs, rhs int64) int64 { return lhs - rhs }
	case MUL:
		return func(lhs, rhs int64) int64 { return lhs * rhs }
	case DIV:
		return func(lhs, rhs int64) float64 {
			if rhs == 0 {
				return float64(0)
			}
			return float64(lhs) / float64(rhs)
		}
	case MOD:
		return func(lhs, rhs int64) int64 {
			if rhs == 0 {
				return int64(0)
			}
			return lhs % rhs
		}
	case BITWISE_AND:
		return func(lhs, rhs int64) int64 { return lhs & rhs }
	case BITWISE_OR:
		return func(lhs, rhs int64) int64 { return lhs | rhs }
	case BITWISE_XOR:
		return func(lhs, rhs int64) int64 { return lhs ^ rhs }
	case EQ:
		return func(lhs, rhs int64) bool { return lhs == rhs }
	case NEQ:
		return func(lhs, rhs int64) bool { return lhs != rhs }
	case LT:
		return func(lhs, rhs int64) bool { return lhs < rhs }
	case LTE:
		return func(lhs, rhs int64) bool { return lhs <= rhs }
	case GT:
		return func(lhs, rhs int64) bool { return lhs > rhs }
	case GTE:
		return func(lhs, rhs int64) bool { return lhs >= rhs }
	}
	return nil
}

func booleanBinaryExprFunc(op Token) interface{} {
	switch op {
	case BITWISE_AND:
		return func(lhs, rhs bool) bool { return lhs && rhs }
	case BITWISE_OR:
		return func(lhs, rhs bool) bool { return lhs || rhs }
	case BITWISE_XOR:
		return func(lhs, rhs bool) bool { return lhs != rhs }
	}
	return nil
}

// stringSetSlice returns a sorted slice of keys from a string set.
func stringSetSlice(m map[string]struct{}) []string {
	if m == nil {
		return nil
	}

	a := make([]string, 0, len(m))
	for k := range m {
		a = append(a, k)
	}
	sort.Strings(a)
	return a
}