functions.go 26.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
package influxql

import (
	"math"
	"time"

	"github.com/influxdata/influxdb/influxql/neldermead"
)

// FloatMeanReducer calculates the mean of the aggregated points.
type FloatMeanReducer struct {
	sum   float64
	count uint32
}

// NewFloatMeanReducer creates a new FloatMeanReducer.
func NewFloatMeanReducer() *FloatMeanReducer {
	return &FloatMeanReducer{}
}

// AggregateFloat aggregates a point into the reducer.
func (r *FloatMeanReducer) AggregateFloat(p *FloatPoint) {
	if p.Aggregated >= 2 {
		r.sum += p.Value * float64(p.Aggregated)
		r.count += p.Aggregated
	} else {
		r.sum += p.Value
		r.count++
	}
}

// Emit emits the mean of the aggregated points as a single point.
func (r *FloatMeanReducer) Emit() []FloatPoint {
	return []FloatPoint{{
		Time:       ZeroTime,
		Value:      r.sum / float64(r.count),
		Aggregated: r.count,
	}}
}

// IntegerMeanReducer calculates the mean of the aggregated points.
type IntegerMeanReducer struct {
	sum   int64
	count uint32
}

// NewIntegerMeanReducer creates a new IntegerMeanReducer.
func NewIntegerMeanReducer() *IntegerMeanReducer {
	return &IntegerMeanReducer{}
}

// AggregateInteger aggregates a point into the reducer.
func (r *IntegerMeanReducer) AggregateInteger(p *IntegerPoint) {
	if p.Aggregated >= 2 {
		r.sum += p.Value * int64(p.Aggregated)
		r.count += p.Aggregated
	} else {
		r.sum += p.Value
		r.count++
	}
}

// Emit emits the mean of the aggregated points as a single point.
func (r *IntegerMeanReducer) Emit() []FloatPoint {
	return []FloatPoint{{
		Time:       ZeroTime,
		Value:      float64(r.sum) / float64(r.count),
		Aggregated: r.count,
	}}
}

// FloatDerivativeReducer calculates the derivative of the aggregated points.
type FloatDerivativeReducer struct {
	interval      Interval
	prev          FloatPoint
	curr          FloatPoint
	isNonNegative bool
	ascending     bool
}

// NewFloatDerivativeReducer creates a new FloatDerivativeReducer.
func NewFloatDerivativeReducer(interval Interval, isNonNegative, ascending bool) *FloatDerivativeReducer {
	return &FloatDerivativeReducer{
		interval:      interval,
		isNonNegative: isNonNegative,
		ascending:     ascending,
		prev:          FloatPoint{Nil: true},
		curr:          FloatPoint{Nil: true},
	}
}

// AggregateFloat aggregates a point into the reducer and updates the current window.
func (r *FloatDerivativeReducer) AggregateFloat(p *FloatPoint) {
	// Skip past a point when it does not advance the stream. A joined series
	// may have multiple points at the same time so we will discard anything
	// except the first point we encounter.
	if !r.curr.Nil && r.curr.Time == p.Time {
		return
	}

	r.prev = r.curr
	r.curr = *p
}

// Emit emits the derivative of the reducer at the current point.
func (r *FloatDerivativeReducer) Emit() []FloatPoint {
	if !r.prev.Nil {
		// Calculate the derivative of successive points by dividing the
		// difference of each value by the elapsed time normalized to the interval.
		diff := r.curr.Value - r.prev.Value
		elapsed := r.curr.Time - r.prev.Time
		if !r.ascending {
			elapsed = -elapsed
		}
		value := diff / (float64(elapsed) / float64(r.interval.Duration))

		// Mark this point as read by changing the previous point to nil.
		r.prev.Nil = true

		// Drop negative values for non-negative derivatives.
		if r.isNonNegative && diff < 0 {
			return nil
		}
		return []FloatPoint{{Time: r.curr.Time, Value: value}}
	}
	return nil
}

// IntegerDerivativeReducer calculates the derivative of the aggregated points.
type IntegerDerivativeReducer struct {
	interval      Interval
	prev          IntegerPoint
	curr          IntegerPoint
	isNonNegative bool
	ascending     bool
}

// NewIntegerDerivativeReducer creates a new IntegerDerivativeReducer.
func NewIntegerDerivativeReducer(interval Interval, isNonNegative, ascending bool) *IntegerDerivativeReducer {
	return &IntegerDerivativeReducer{
		interval:      interval,
		isNonNegative: isNonNegative,
		ascending:     ascending,
		prev:          IntegerPoint{Nil: true},
		curr:          IntegerPoint{Nil: true},
	}
}

// AggregateInteger aggregates a point into the reducer and updates the current window.
func (r *IntegerDerivativeReducer) AggregateInteger(p *IntegerPoint) {
	// Skip past a point when it does not advance the stream. A joined series
	// may have multiple points at the same time so we will discard anything
	// except the first point we encounter.
	if !r.curr.Nil && r.curr.Time == p.Time {
		return
	}

	r.prev = r.curr
	r.curr = *p
}

// Emit emits the derivative of the reducer at the current point.
func (r *IntegerDerivativeReducer) Emit() []FloatPoint {
	if !r.prev.Nil {
		// Calculate the derivative of successive points by dividing the
		// difference of each value by the elapsed time normalized to the interval.
		diff := float64(r.curr.Value - r.prev.Value)
		elapsed := r.curr.Time - r.prev.Time
		if !r.ascending {
			elapsed = -elapsed
		}
		value := diff / (float64(elapsed) / float64(r.interval.Duration))

		// Mark this point as read by changing the previous point to nil.
		r.prev.Nil = true

		// Drop negative values for non-negative derivatives.
		if r.isNonNegative && diff < 0 {
			return nil
		}
		return []FloatPoint{{Time: r.curr.Time, Value: value}}
	}
	return nil
}

// FloatDifferenceReducer calculates the derivative of the aggregated points.
type FloatDifferenceReducer struct {
	isNonNegative bool
	prev          FloatPoint
	curr          FloatPoint
}

// NewFloatDifferenceReducer creates a new FloatDifferenceReducer.
func NewFloatDifferenceReducer(isNonNegative bool) *FloatDifferenceReducer {
	return &FloatDifferenceReducer{
		isNonNegative: isNonNegative,
		prev:          FloatPoint{Nil: true},
		curr:          FloatPoint{Nil: true},
	}
}

// AggregateFloat aggregates a point into the reducer and updates the current window.
func (r *FloatDifferenceReducer) AggregateFloat(p *FloatPoint) {
	// Skip past a point when it does not advance the stream. A joined series
	// may have multiple points at the same time so we will discard anything
	// except the first point we encounter.
	if !r.curr.Nil && r.curr.Time == p.Time {
		return
	}

	r.prev = r.curr
	r.curr = *p
}

// Emit emits the difference of the reducer at the current point.
func (r *FloatDifferenceReducer) Emit() []FloatPoint {
	if !r.prev.Nil {
		// Calculate the difference of successive points.
		value := r.curr.Value - r.prev.Value

		// If it is non_negative_difference discard any negative value. Since
		// prev is still marked as unread. The correctness can be ensured.
		if r.isNonNegative && value < 0 {
			return nil
		}

		// Mark this point as read by changing the previous point to nil.
		r.prev.Nil = true
		return []FloatPoint{{Time: r.curr.Time, Value: value}}
	}
	return nil
}

// IntegerDifferenceReducer calculates the derivative of the aggregated points.
type IntegerDifferenceReducer struct {
	isNonNegative bool
	prev          IntegerPoint
	curr          IntegerPoint
}

// NewIntegerDifferenceReducer creates a new IntegerDifferenceReducer.
func NewIntegerDifferenceReducer(isNonNegative bool) *IntegerDifferenceReducer {
	return &IntegerDifferenceReducer{
		isNonNegative: isNonNegative,
		prev:          IntegerPoint{Nil: true},
		curr:          IntegerPoint{Nil: true},
	}
}

// AggregateInteger aggregates a point into the reducer and updates the current window.
func (r *IntegerDifferenceReducer) AggregateInteger(p *IntegerPoint) {
	// Skip past a point when it does not advance the stream. A joined series
	// may have multiple points at the same time so we will discard anything
	// except the first point we encounter.
	if !r.curr.Nil && r.curr.Time == p.Time {
		return
	}

	r.prev = r.curr
	r.curr = *p
}

// Emit emits the difference of the reducer at the current point.
func (r *IntegerDifferenceReducer) Emit() []IntegerPoint {
	if !r.prev.Nil {
		// Calculate the difference of successive points.
		value := r.curr.Value - r.prev.Value

		// If it is non_negative_difference discard any negative value. Since
		// prev is still marked as unread. The correctness can be ensured.
		if r.isNonNegative && value < 0 {
			return nil
		}

		// Mark this point as read by changing the previous point to nil.
		r.prev.Nil = true

		return []IntegerPoint{{Time: r.curr.Time, Value: value}}
	}
	return nil
}

// FloatMovingAverageReducer calculates the moving average of the aggregated points.
type FloatMovingAverageReducer struct {
	pos  int
	sum  float64
	time int64
	buf  []float64
}

// NewFloatMovingAverageReducer creates a new FloatMovingAverageReducer.
func NewFloatMovingAverageReducer(n int) *FloatMovingAverageReducer {
	return &FloatMovingAverageReducer{
		buf: make([]float64, 0, n),
	}
}

// AggregateFloat aggregates a point into the reducer and updates the current window.
func (r *FloatMovingAverageReducer) AggregateFloat(p *FloatPoint) {
	if len(r.buf) != cap(r.buf) {
		r.buf = append(r.buf, p.Value)
	} else {
		r.sum -= r.buf[r.pos]
		r.buf[r.pos] = p.Value
	}
	r.sum += p.Value
	r.time = p.Time
	r.pos++
	if r.pos >= cap(r.buf) {
		r.pos = 0
	}
}

// Emit emits the moving average of the current window. Emit should be called
// after every call to AggregateFloat and it will produce one point if there
// is enough data to fill a window, otherwise it will produce zero points.
func (r *FloatMovingAverageReducer) Emit() []FloatPoint {
	if len(r.buf) != cap(r.buf) {
		return []FloatPoint{}
	}
	return []FloatPoint{
		{
			Value:      r.sum / float64(len(r.buf)),
			Time:       r.time,
			Aggregated: uint32(len(r.buf)),
		},
	}
}

// IntegerMovingAverageReducer calculates the moving average of the aggregated points.
type IntegerMovingAverageReducer struct {
	pos  int
	sum  int64
	time int64
	buf  []int64
}

// NewIntegerMovingAverageReducer creates a new IntegerMovingAverageReducer.
func NewIntegerMovingAverageReducer(n int) *IntegerMovingAverageReducer {
	return &IntegerMovingAverageReducer{
		buf: make([]int64, 0, n),
	}
}

// AggregateInteger aggregates a point into the reducer and updates the current window.
func (r *IntegerMovingAverageReducer) AggregateInteger(p *IntegerPoint) {
	if len(r.buf) != cap(r.buf) {
		r.buf = append(r.buf, p.Value)
	} else {
		r.sum -= r.buf[r.pos]
		r.buf[r.pos] = p.Value
	}
	r.sum += p.Value
	r.time = p.Time
	r.pos++
	if r.pos >= cap(r.buf) {
		r.pos = 0
	}
}

// Emit emits the moving average of the current window. Emit should be called
// after every call to AggregateInteger and it will produce one point if there
// is enough data to fill a window, otherwise it will produce zero points.
func (r *IntegerMovingAverageReducer) Emit() []FloatPoint {
	if len(r.buf) != cap(r.buf) {
		return []FloatPoint{}
	}
	return []FloatPoint{
		{
			Value:      float64(r.sum) / float64(len(r.buf)),
			Time:       r.time,
			Aggregated: uint32(len(r.buf)),
		},
	}
}

// FloatCumulativeSumReducer cumulates the values from each point.
type FloatCumulativeSumReducer struct {
	curr FloatPoint
}

// NewFloatCumulativeSumReducer creates a new FloatCumulativeSumReducer.
func NewFloatCumulativeSumReducer() *FloatCumulativeSumReducer {
	return &FloatCumulativeSumReducer{
		curr: FloatPoint{Nil: true},
	}
}

func (r *FloatCumulativeSumReducer) AggregateFloat(p *FloatPoint) {
	r.curr.Value += p.Value
	r.curr.Time = p.Time
	r.curr.Nil = false
}

func (r *FloatCumulativeSumReducer) Emit() []FloatPoint {
	var pts []FloatPoint
	if !r.curr.Nil {
		pts = []FloatPoint{r.curr}
	}
	return pts
}

// IntegerCumulativeSumReducer cumulates the values from each point.
type IntegerCumulativeSumReducer struct {
	curr IntegerPoint
}

// NewIntegerCumulativeSumReducer creates a new IntegerCumulativeSumReducer.
func NewIntegerCumulativeSumReducer() *IntegerCumulativeSumReducer {
	return &IntegerCumulativeSumReducer{
		curr: IntegerPoint{Nil: true},
	}
}

func (r *IntegerCumulativeSumReducer) AggregateInteger(p *IntegerPoint) {
	r.curr.Value += p.Value
	r.curr.Time = p.Time
	r.curr.Nil = false
}

func (r *IntegerCumulativeSumReducer) Emit() []IntegerPoint {
	var pts []IntegerPoint
	if !r.curr.Nil {
		pts = []IntegerPoint{r.curr}
	}
	return pts
}

// FloatHoltWintersReducer forecasts a series into the future.
// This is done using the Holt-Winters damped method.
//    1. Using the series the initial values are calculated using a SSE.
//    2. The series is forecasted into the future using the iterative relations.
type FloatHoltWintersReducer struct {
	// Season period
	m        int
	seasonal bool

	// Horizon
	h int

	// Interval between points
	interval int64
	// interval / 2 -- used to perform rounding
	halfInterval int64

	// Whether to include all data or only future values
	includeFitData bool

	// NelderMead optimizer
	optim *neldermead.Optimizer
	// Small difference bound for the optimizer
	epsilon float64

	y      []float64
	points []FloatPoint
}

const (
	// Arbitrary weight for initializing some intial guesses.
	// This should be in the  range [0,1]
	hwWeight = 0.5
	// Epsilon value for the minimization process
	hwDefaultEpsilon = 1.0e-4
	// Define a grid of initial guesses for the parameters: alpha, beta, gamma, and phi.
	// Keep in mind that this grid is N^4 so we should keep N small
	// The starting lower guess
	hwGuessLower = 0.3
	//  The upper bound on the grid
	hwGuessUpper = 1.0
	// The step between guesses
	hwGuessStep = 0.4
)

// NewFloatHoltWintersReducer creates a new FloatHoltWintersReducer.
func NewFloatHoltWintersReducer(h, m int, includeFitData bool, interval time.Duration) *FloatHoltWintersReducer {
	seasonal := true
	if m < 2 {
		seasonal = false
	}
	return &FloatHoltWintersReducer{
		h:              h,
		m:              m,
		seasonal:       seasonal,
		includeFitData: includeFitData,
		interval:       int64(interval),
		halfInterval:   int64(interval) / 2,
		optim:          neldermead.New(),
		epsilon:        hwDefaultEpsilon,
	}
}

func (r *FloatHoltWintersReducer) aggregate(time int64, value float64) {
	r.points = append(r.points, FloatPoint{
		Time:  time,
		Value: value,
	})
}

// AggregateFloat aggregates a point into the reducer and updates the current window.
func (r *FloatHoltWintersReducer) AggregateFloat(p *FloatPoint) {
	r.aggregate(p.Time, p.Value)
}

// AggregateInteger aggregates a point into the reducer and updates the current window.
func (r *FloatHoltWintersReducer) AggregateInteger(p *IntegerPoint) {
	r.aggregate(p.Time, float64(p.Value))
}

func (r *FloatHoltWintersReducer) roundTime(t int64) int64 {
	// Overflow safe round function
	remainder := t % r.interval
	if remainder > r.halfInterval {
		// Round up
		return (t/r.interval + 1) * r.interval
	}
	// Round down
	return (t / r.interval) * r.interval
}

// Emit returns the points generated by the HoltWinters algorithm.
func (r *FloatHoltWintersReducer) Emit() []FloatPoint {
	if l := len(r.points); l < 2 || r.seasonal && l < r.m || r.h <= 0 {
		return nil
	}
	// First fill in r.y with values and NaNs for missing values
	start, stop := r.roundTime(r.points[0].Time), r.roundTime(r.points[len(r.points)-1].Time)
	count := (stop - start) / r.interval
	if count <= 0 {
		return nil
	}
	r.y = make([]float64, 1, count)
	r.y[0] = r.points[0].Value
	t := r.roundTime(r.points[0].Time)
	for _, p := range r.points[1:] {
		rounded := r.roundTime(p.Time)
		if rounded <= t {
			// Drop values that occur for the same time bucket
			continue
		}
		t += r.interval
		// Add any missing values before the next point
		for rounded != t {
			// Add in a NaN so we can skip it later.
			r.y = append(r.y, math.NaN())
			t += r.interval
		}
		r.y = append(r.y, p.Value)
	}

	// Seasonality
	m := r.m

	// Starting guesses
	// NOTE: Since these values are guesses
	// in the cases where we were missing data,
	// we can just skip the value and call it good.

	l0 := 0.0
	if r.seasonal {
		for i := 0; i < m; i++ {
			if !math.IsNaN(r.y[i]) {
				l0 += (1 / float64(m)) * r.y[i]
			}
		}
	} else {
		l0 += hwWeight * r.y[0]
	}

	b0 := 0.0
	if r.seasonal {
		for i := 0; i < m && m+i < len(r.y); i++ {
			if !math.IsNaN(r.y[i]) && !math.IsNaN(r.y[m+i]) {
				b0 += 1 / float64(m*m) * (r.y[m+i] - r.y[i])
			}
		}
	} else {
		if !math.IsNaN(r.y[1]) {
			b0 = hwWeight * (r.y[1] - r.y[0])
		}
	}

	var s []float64
	if r.seasonal {
		s = make([]float64, m)
		for i := 0; i < m; i++ {
			if !math.IsNaN(r.y[i]) {
				s[i] = r.y[i] / l0
			} else {
				s[i] = 0
			}
		}
	}

	parameters := make([]float64, 6+len(s))
	parameters[4] = l0
	parameters[5] = b0
	o := len(parameters) - len(s)
	for i := range s {
		parameters[i+o] = s[i]
	}

	// Determine best fit for the various parameters
	minSSE := math.Inf(1)
	var bestParams []float64
	for alpha := hwGuessLower; alpha < hwGuessUpper; alpha += hwGuessStep {
		for beta := hwGuessLower; beta < hwGuessUpper; beta += hwGuessStep {
			for gamma := hwGuessLower; gamma < hwGuessUpper; gamma += hwGuessStep {
				for phi := hwGuessLower; phi < hwGuessUpper; phi += hwGuessStep {
					parameters[0] = alpha
					parameters[1] = beta
					parameters[2] = gamma
					parameters[3] = phi
					sse, params := r.optim.Optimize(r.sse, parameters, r.epsilon, 1)
					if sse < minSSE || bestParams == nil {
						minSSE = sse
						bestParams = params
					}
				}
			}
		}
	}

	// Forecast
	forecasted := r.forecast(r.h, bestParams)
	var points []FloatPoint
	if r.includeFitData {
		start := r.points[0].Time
		points = make([]FloatPoint, 0, len(forecasted))
		for i, v := range forecasted {
			if !math.IsNaN(v) {
				t := start + r.interval*(int64(i))
				points = append(points, FloatPoint{
					Value: v,
					Time:  t,
				})
			}
		}
	} else {
		stop := r.points[len(r.points)-1].Time
		points = make([]FloatPoint, 0, r.h)
		for i, v := range forecasted[len(r.y):] {
			if !math.IsNaN(v) {
				t := stop + r.interval*(int64(i)+1)
				points = append(points, FloatPoint{
					Value: v,
					Time:  t,
				})
			}
		}
	}
	// Clear data set
	r.y = r.y[0:0]
	return points
}

// Using the recursive relations compute the next values
func (r *FloatHoltWintersReducer) next(alpha, beta, gamma, phi, phiH, yT, lTp, bTp, sTm, sTmh float64) (yTh, lT, bT, sT float64) {
	lT = alpha*(yT/sTm) + (1-alpha)*(lTp+phi*bTp)
	bT = beta*(lT-lTp) + (1-beta)*phi*bTp
	sT = gamma*(yT/(lTp+phi*bTp)) + (1-gamma)*sTm
	yTh = (lT + phiH*bT) * sTmh
	return
}

// Forecast the data h points into the future.
func (r *FloatHoltWintersReducer) forecast(h int, params []float64) []float64 {
	// Constrain parameters
	r.constrain(params)

	yT := r.y[0]

	phi := params[3]
	phiH := phi

	lT := params[4]
	bT := params[5]

	// seasonals is a ring buffer of past sT values
	var seasonals []float64
	var m, so int
	if r.seasonal {
		seasonals = params[6:]
		m = len(params[6:])
		if m == 1 {
			seasonals[0] = 1
		}
		// Season index offset
		so = m - 1
	}

	forecasted := make([]float64, len(r.y)+h)
	forecasted[0] = yT
	l := len(r.y)
	var hm int
	stm, stmh := 1.0, 1.0
	for t := 1; t < l+h; t++ {
		if r.seasonal {
			hm = t % m
			stm = seasonals[(t-m+so)%m]
			stmh = seasonals[(t-m+hm+so)%m]
		}
		var sT float64
		yT, lT, bT, sT = r.next(
			params[0], // alpha
			params[1], // beta
			params[2], // gamma
			phi,
			phiH,
			yT,
			lT,
			bT,
			stm,
			stmh,
		)
		phiH += math.Pow(phi, float64(t))

		if r.seasonal {
			seasonals[(t+so)%m] = sT
			so++
		}

		forecasted[t] = yT
	}
	return forecasted
}

// Compute sum squared error for the given parameters.
func (r *FloatHoltWintersReducer) sse(params []float64) float64 {
	sse := 0.0
	forecasted := r.forecast(0, params)
	for i := range forecasted {
		// Skip missing values since we cannot use them to compute an error.
		if !math.IsNaN(r.y[i]) {
			// Compute error
			if math.IsNaN(forecasted[i]) {
				// Penalize forecasted NaNs
				return math.Inf(1)
			}
			diff := forecasted[i] - r.y[i]
			sse += diff * diff
		}
	}
	return sse
}

// Constrain alpha, beta, gamma, phi in the range [0, 1]
func (r *FloatHoltWintersReducer) constrain(x []float64) {
	// alpha
	if x[0] > 1 {
		x[0] = 1
	}
	if x[0] < 0 {
		x[0] = 0
	}
	// beta
	if x[1] > 1 {
		x[1] = 1
	}
	if x[1] < 0 {
		x[1] = 0
	}
	// gamma
	if x[2] > 1 {
		x[2] = 1
	}
	if x[2] < 0 {
		x[2] = 0
	}
	// phi
	if x[3] > 1 {
		x[3] = 1
	}
	if x[3] < 0 {
		x[3] = 0
	}
}

// FloatIntegralReducer calculates the time-integral of the aggregated points.
type FloatIntegralReducer struct {
	interval Interval
	sum      float64
	prev     FloatPoint
	window   struct {
		start int64
		end   int64
	}
	ch  chan FloatPoint
	opt IteratorOptions
}

// NewFloatIntegralReducer creates a new FloatIntegralReducer.
func NewFloatIntegralReducer(interval Interval, opt IteratorOptions) *FloatIntegralReducer {
	return &FloatIntegralReducer{
		interval: interval,
		prev:     FloatPoint{Nil: true},
		ch:       make(chan FloatPoint, 1),
		opt:      opt,
	}
}

// AggregateFloat aggregates a point into the reducer.
func (r *FloatIntegralReducer) AggregateFloat(p *FloatPoint) {
	// If this is the first point, just save it
	if r.prev.Nil {
		r.prev = *p
		if !r.opt.Interval.IsZero() {
			// Record the end of the time interval.
			// We do not care for whether the last number is inclusive or exclusive
			// because we treat both the same for the involved math.
			if r.opt.Ascending {
				r.window.start, r.window.end = r.opt.Window(p.Time)
			} else {
				r.window.end, r.window.start = r.opt.Window(p.Time)
			}
		}
		return
	}

	// If this point has the same timestamp as the previous one,
	// skip the point. Points sent into this reducer are expected
	// to be fed in order.
	if r.prev.Time == p.Time {
		r.prev = *p
		return
	} else if !r.opt.Interval.IsZero() && ((r.opt.Ascending && p.Time >= r.window.end) || (!r.opt.Ascending && p.Time <= r.window.end)) {
		// If our previous time is not equal to the window, we need to
		// interpolate the area at the end of this interval.
		if r.prev.Time != r.window.end {
			value := linearFloat(r.window.end, r.prev.Time, p.Time, r.prev.Value, p.Value)
			elapsed := float64(r.window.end-r.prev.Time) / float64(r.interval.Duration)
			r.sum += 0.5 * (value + r.prev.Value) * elapsed

			r.prev.Value = value
			r.prev.Time = r.window.end
		}

		// Emit the current point through the channel and then clear it.
		r.ch <- FloatPoint{Time: r.window.start, Value: r.sum}
		if r.opt.Ascending {
			r.window.start, r.window.end = r.opt.Window(p.Time)
		} else {
			r.window.end, r.window.start = r.opt.Window(p.Time)
		}
		r.sum = 0.0
	}

	// Normal operation: update the sum using the trapezium rule
	elapsed := float64(p.Time-r.prev.Time) / float64(r.interval.Duration)
	r.sum += 0.5 * (p.Value + r.prev.Value) * elapsed
	r.prev = *p
}

// Emit emits the time-integral of the aggregated points as a single point.
// InfluxQL convention dictates that outside a group-by-time clause we return
// a timestamp of zero.  Within a group-by-time, we can set the time to ZeroTime
// and a higher level will change it to the start of the time group.
func (r *FloatIntegralReducer) Emit() []FloatPoint {
	select {
	case pt, ok := <-r.ch:
		if !ok {
			return nil
		}
		return []FloatPoint{pt}
	default:
		return nil
	}
}

// Close flushes any in progress points to ensure any remaining points are
// emitted.
func (r *FloatIntegralReducer) Close() error {
	// If our last point is at the start time, then discard this point since
	// there is no area within this bucket. Otherwise, send off what we
	// currently have as the final point.
	if !r.prev.Nil && r.prev.Time != r.window.start {
		r.ch <- FloatPoint{Time: r.window.start, Value: r.sum}
	}
	close(r.ch)
	return nil
}

// IntegerIntegralReducer calculates the time-integral of the aggregated points.
type IntegerIntegralReducer struct {
	interval Interval
	sum      float64
	prev     IntegerPoint
	window   struct {
		start int64
		end   int64
	}
	ch  chan FloatPoint
	opt IteratorOptions
}

// NewIntegerIntegralReducer creates a new IntegerIntegralReducer.
func NewIntegerIntegralReducer(interval Interval, opt IteratorOptions) *IntegerIntegralReducer {
	return &IntegerIntegralReducer{
		interval: interval,
		prev:     IntegerPoint{Nil: true},
		ch:       make(chan FloatPoint, 1),
		opt:      opt,
	}
}

// AggregateInteger aggregates a point into the reducer.
func (r *IntegerIntegralReducer) AggregateInteger(p *IntegerPoint) {
	// If this is the first point, just save it
	if r.prev.Nil {
		r.prev = *p

		// Record the end of the time interval.
		// We do not care for whether the last number is inclusive or exclusive
		// because we treat both the same for the involved math.
		if r.opt.Ascending {
			r.window.start, r.window.end = r.opt.Window(p.Time)
		} else {
			r.window.end, r.window.start = r.opt.Window(p.Time)
		}

		// If we see the minimum allowable time, set the time to zero so we don't
		// break the default returned time for aggregate queries without times.
		if r.window.start == MinTime {
			r.window.start = 0
		}
		return
	}

	// If this point has the same timestamp as the previous one,
	// skip the point. Points sent into this reducer are expected
	// to be fed in order.
	value := float64(p.Value)
	if r.prev.Time == p.Time {
		r.prev = *p
		return
	} else if (r.opt.Ascending && p.Time >= r.window.end) || (!r.opt.Ascending && p.Time <= r.window.end) {
		// If our previous time is not equal to the window, we need to
		// interpolate the area at the end of this interval.
		if r.prev.Time != r.window.end {
			value = linearFloat(r.window.end, r.prev.Time, p.Time, float64(r.prev.Value), value)
			elapsed := float64(r.window.end-r.prev.Time) / float64(r.interval.Duration)
			r.sum += 0.5 * (value + float64(r.prev.Value)) * elapsed

			r.prev.Time = r.window.end
		}

		// Emit the current point through the channel and then clear it.
		r.ch <- FloatPoint{Time: r.window.start, Value: r.sum}
		if r.opt.Ascending {
			r.window.start, r.window.end = r.opt.Window(p.Time)
		} else {
			r.window.end, r.window.start = r.opt.Window(p.Time)
		}
		r.sum = 0.0
	}

	// Normal operation: update the sum using the trapezium rule
	elapsed := float64(p.Time-r.prev.Time) / float64(r.interval.Duration)
	r.sum += 0.5 * (value + float64(r.prev.Value)) * elapsed
	r.prev = *p
}

// Emit emits the time-integral of the aggregated points as a single FLOAT point
// InfluxQL convention dictates that outside a group-by-time clause we return
// a timestamp of zero.  Within a group-by-time, we can set the time to ZeroTime
// and a higher level will change it to the start of the time group.
func (r *IntegerIntegralReducer) Emit() []FloatPoint {
	select {
	case pt, ok := <-r.ch:
		if !ok {
			return nil
		}
		return []FloatPoint{pt}
	default:
		return nil
	}
}

// Close flushes any in progress points to ensure any remaining points are
// emitted.
func (r *IntegerIntegralReducer) Close() error {
	// If our last point is at the start time, then discard this point since
	// there is no area within this bucket. Otherwise, send off what we
	// currently have as the final point.
	if !r.prev.Nil && r.prev.Time != r.window.start {
		r.ch <- FloatPoint{Time: r.window.start, Value: r.sum}
	}
	close(r.ch)
	return nil
}