points.go 53 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
// Package models implements basic objects used throughout the TICK stack.
package models // import "github.com/influxdata/influxdb/models"

import (
	"bytes"
	"encoding/binary"
	"errors"
	"fmt"
	"io"
	"math"
	"sort"
	"strconv"
	"strings"
	"time"

	"github.com/influxdata/influxdb/pkg/escape"
)

var (
	measurementEscapeCodes = map[byte][]byte{
		',': []byte(`\,`),
		' ': []byte(`\ `),
	}

	tagEscapeCodes = map[byte][]byte{
		',': []byte(`\,`),
		' ': []byte(`\ `),
		'=': []byte(`\=`),
	}

	// ErrPointMustHaveAField is returned when operating on a point that does not have any fields.
	ErrPointMustHaveAField = errors.New("point without fields is unsupported")

	// ErrInvalidNumber is returned when a number is expected but not provided.
	ErrInvalidNumber = errors.New("invalid number")

	// ErrInvalidPoint is returned when a point cannot be parsed correctly.
	ErrInvalidPoint = errors.New("point is invalid")
)

const (
	// MaxKeyLength is the largest allowed size of the combined measurement and tag keys.
	MaxKeyLength = 65535
)

// Point defines the values that will be written to the database.
type Point interface {
	// Name return the measurement name for the point.
	Name() string

	// SetName updates the measurement name for the point.
	SetName(string)

	// Tags returns the tag set for the point.
	Tags() Tags

	// AddTag adds or replaces a tag value for a point.
	AddTag(key, value string)

	// SetTags replaces the tags for the point.
	SetTags(tags Tags)

	// Fields returns the fields for the point.
	Fields() (Fields, error)

	// Time return the timestamp for the point.
	Time() time.Time

	// SetTime updates the timestamp for the point.
	SetTime(t time.Time)

	// UnixNano returns the timestamp of the point as nanoseconds since Unix epoch.
	UnixNano() int64

	// HashID returns a non-cryptographic checksum of the point's key.
	HashID() uint64

	// Key returns the key (measurement joined with tags) of the point.
	Key() []byte

	// String returns a string representation of the point. If there is a
	// timestamp associated with the point then it will be specified with the default
	// precision of nanoseconds.
	String() string

	// MarshalBinary returns a binary representation of the point.
	MarshalBinary() ([]byte, error)

	// PrecisionString returns a string representation of the point. If there
	// is a timestamp associated with the point then it will be specified in the
	// given unit.
	PrecisionString(precision string) string

	// RoundedString returns a string representation of the point. If there
	// is a timestamp associated with the point, then it will be rounded to the
	// given duration.
	RoundedString(d time.Duration) string

	// Split will attempt to return multiple points with the same timestamp whose
	// string representations are no longer than size. Points with a single field or
	// a point without a timestamp may exceed the requested size.
	Split(size int) []Point

	// Round will round the timestamp of the point to the given duration.
	Round(d time.Duration)

	// StringSize returns the length of the string that would be returned by String().
	StringSize() int

	// AppendString appends the result of String() to the provided buffer and returns
	// the result, potentially reducing string allocations.
	AppendString(buf []byte) []byte

	// FieldIterator retuns a FieldIterator that can be used to traverse the
	// fields of a point without constructing the in-memory map.
	FieldIterator() FieldIterator
}

// FieldType represents the type of a field.
type FieldType int

const (
	// Integer indicates the field's type is integer.
	Integer FieldType = iota

	// Float indicates the field's type is float.
	Float

	// Boolean indicates the field's type is boolean.
	Boolean

	// String indicates the field's type is string.
	String

	// Empty is used to indicate that there is no field.
	Empty
)

// FieldIterator provides a low-allocation interface to iterate through a point's fields.
type FieldIterator interface {
	// Next indicates whether there any fields remaining.
	Next() bool

	// FieldKey returns the key of the current field.
	FieldKey() []byte

	// Type returns the FieldType of the current field.
	Type() FieldType

	// StringValue returns the string value of the current field.
	StringValue() string

	// IntegerValue returns the integer value of the current field.
	IntegerValue() (int64, error)

	// BooleanValue returns the boolean value of the current field.
	BooleanValue() (bool, error)

	// FloatValue returns the float value of the current field.
	FloatValue() (float64, error)

	// Delete deletes the current field.
	Delete()

	// Reset resets the iterator to its initial state.
	Reset()
}

// Points represents a sortable list of points by timestamp.
type Points []Point

// Len implements sort.Interface.
func (a Points) Len() int { return len(a) }

// Less implements sort.Interface.
func (a Points) Less(i, j int) bool { return a[i].Time().Before(a[j].Time()) }

// Swap implements sort.Interface.
func (a Points) Swap(i, j int) { a[i], a[j] = a[j], a[i] }

// point is the default implementation of Point.
type point struct {
	time time.Time

	// text encoding of measurement and tags
	// key must always be stored sorted by tags, if the original line was not sorted,
	// we need to resort it
	key []byte

	// text encoding of field data
	fields []byte

	// text encoding of timestamp
	ts []byte

	// cached version of parsed fields from data
	cachedFields map[string]interface{}

	// cached version of parsed name from key
	cachedName string

	// cached version of parsed tags
	cachedTags Tags

	it fieldIterator
}

const (
	// the number of characters for the largest possible int64 (9223372036854775807)
	maxInt64Digits = 19

	// the number of characters for the smallest possible int64 (-9223372036854775808)
	minInt64Digits = 20

	// the number of characters required for the largest float64 before a range check
	// would occur during parsing
	maxFloat64Digits = 25

	// the number of characters required for smallest float64 before a range check occur
	// would occur during parsing
	minFloat64Digits = 27
)

// ParsePoints returns a slice of Points from a text representation of a point
// with each point separated by newlines.  If any points fail to parse, a non-nil error
// will be returned in addition to the points that parsed successfully.
func ParsePoints(buf []byte) ([]Point, error) {
	return ParsePointsWithPrecision(buf, time.Now().UTC(), "n")
}

// ParsePointsString is identical to ParsePoints but accepts a string.
func ParsePointsString(buf string) ([]Point, error) {
	return ParsePoints([]byte(buf))
}

// ParseKey returns the measurement name and tags from a point.
//
// NOTE: to minimize heap allocations, the returned Tags will refer to subslices of buf.
// This can have the unintended effect preventing buf from being garbage collected.
func ParseKey(buf []byte) (string, Tags, error) {
	// Ignore the error because scanMeasurement returns "missing fields" which we ignore
	// when just parsing a key
	state, i, _ := scanMeasurement(buf, 0)

	var tags Tags
	if state == tagKeyState {
		tags = parseTags(buf)
		// scanMeasurement returns the location of the comma if there are tags, strip that off
		return string(buf[:i-1]), tags, nil
	}
	return string(buf[:i]), tags, nil
}

// ParsePointsWithPrecision is similar to ParsePoints, but allows the
// caller to provide a precision for time.
//
// NOTE: to minimize heap allocations, the returned Points will refer to subslices of buf.
// This can have the unintended effect preventing buf from being garbage collected.
func ParsePointsWithPrecision(buf []byte, defaultTime time.Time, precision string) ([]Point, error) {
	points := make([]Point, 0, bytes.Count(buf, []byte{'\n'})+1)
	var (
		pos    int
		block  []byte
		failed []string
	)
	for pos < len(buf) {
		pos, block = scanLine(buf, pos)
		pos++

		if len(block) == 0 {
			continue
		}

		// lines which start with '#' are comments
		start := skipWhitespace(block, 0)

		// If line is all whitespace, just skip it
		if start >= len(block) {
			continue
		}

		if block[start] == '#' {
			continue
		}

		// strip the newline if one is present
		if block[len(block)-1] == '\n' {
			block = block[:len(block)-1]
		}

		pt, err := parsePoint(block[start:], defaultTime, precision)
		if err != nil {
			failed = append(failed, fmt.Sprintf("unable to parse '%s': %v", string(block[start:]), err))
		} else {
			points = append(points, pt)
		}

	}
	if len(failed) > 0 {
		return points, fmt.Errorf("%s", strings.Join(failed, "\n"))
	}
	return points, nil

}

func parsePoint(buf []byte, defaultTime time.Time, precision string) (Point, error) {
	// scan the first block which is measurement[,tag1=value1,tag2=value=2...]
	pos, key, err := scanKey(buf, 0)
	if err != nil {
		return nil, err
	}

	// measurement name is required
	if len(key) == 0 {
		return nil, fmt.Errorf("missing measurement")
	}

	if len(key) > MaxKeyLength {
		return nil, fmt.Errorf("max key length exceeded: %v > %v", len(key), MaxKeyLength)
	}

	// scan the second block is which is field1=value1[,field2=value2,...]
	pos, fields, err := scanFields(buf, pos)
	if err != nil {
		return nil, err
	}

	// at least one field is required
	if len(fields) == 0 {
		return nil, fmt.Errorf("missing fields")
	}

	// scan the last block which is an optional integer timestamp
	pos, ts, err := scanTime(buf, pos)
	if err != nil {
		return nil, err
	}

	pt := &point{
		key:    key,
		fields: fields,
		ts:     ts,
	}

	if len(ts) == 0 {
		pt.time = defaultTime
		pt.SetPrecision(precision)
	} else {
		ts, err := parseIntBytes(ts, 10, 64)
		if err != nil {
			return nil, err
		}
		pt.time, err = SafeCalcTime(ts, precision)
		if err != nil {
			return nil, err
		}

		// Determine if there are illegal non-whitespace characters after the
		// timestamp block.
		for pos < len(buf) {
			if buf[pos] != ' ' {
				return nil, ErrInvalidPoint
			}
			pos++
		}
	}
	return pt, nil
}

// GetPrecisionMultiplier will return a multiplier for the precision specified.
func GetPrecisionMultiplier(precision string) int64 {
	d := time.Nanosecond
	switch precision {
	case "u":
		d = time.Microsecond
	case "ms":
		d = time.Millisecond
	case "s":
		d = time.Second
	case "m":
		d = time.Minute
	case "h":
		d = time.Hour
	}
	return int64(d)
}

// scanKey scans buf starting at i for the measurement and tag portion of the point.
// It returns the ending position and the byte slice of key within buf.  If there
// are tags, they will be sorted if they are not already.
func scanKey(buf []byte, i int) (int, []byte, error) {
	start := skipWhitespace(buf, i)

	i = start

	// Determines whether the tags are sort, assume they are
	sorted := true

	// indices holds the indexes within buf of the start of each tag.  For example,
	// a buf of 'cpu,host=a,region=b,zone=c' would have indices slice of [4,11,20]
	// which indicates that the first tag starts at buf[4], seconds at buf[11], and
	// last at buf[20]
	indices := make([]int, 100)

	// tracks how many commas we've seen so we know how many values are indices.
	// Since indices is an arbitrarily large slice,
	// we need to know how many values in the buffer are in use.
	commas := 0

	// First scan the Point's measurement.
	state, i, err := scanMeasurement(buf, i)
	if err != nil {
		return i, buf[start:i], err
	}

	// Optionally scan tags if needed.
	if state == tagKeyState {
		i, commas, indices, err = scanTags(buf, i, indices)
		if err != nil {
			return i, buf[start:i], err
		}
	}

	// Now we know where the key region is within buf, and the location of tags, we
	// need to determine if duplicate tags exist and if the tags are sorted. This iterates
	// over the list comparing each tag in the sequence with each other.
	for j := 0; j < commas-1; j++ {
		// get the left and right tags
		_, left := scanTo(buf[indices[j]:indices[j+1]-1], 0, '=')
		_, right := scanTo(buf[indices[j+1]:indices[j+2]-1], 0, '=')

		// If left is greater than right, the tags are not sorted. We do not have to
		// continue because the short path no longer works.
		// If the tags are equal, then there are duplicate tags, and we should abort.
		// If the tags are not sorted, this pass may not find duplicate tags and we
		// need to do a more exhaustive search later.
		if cmp := bytes.Compare(left, right); cmp > 0 {
			sorted = false
			break
		} else if cmp == 0 {
			return i, buf[start:i], fmt.Errorf("duplicate tags")
		}
	}

	// If the tags are not sorted, then sort them.  This sort is inline and
	// uses the tag indices we created earlier.  The actual buffer is not sorted, the
	// indices are using the buffer for value comparison.  After the indices are sorted,
	// the buffer is reconstructed from the sorted indices.
	if !sorted && commas > 0 {
		// Get the measurement name for later
		measurement := buf[start : indices[0]-1]

		// Sort the indices
		indices := indices[:commas]
		insertionSort(0, commas, buf, indices)

		// Create a new key using the measurement and sorted indices
		b := make([]byte, len(buf[start:i]))
		pos := copy(b, measurement)
		for _, i := range indices {
			b[pos] = ','
			pos++
			_, v := scanToSpaceOr(buf, i, ',')
			pos += copy(b[pos:], v)
		}

		// Check again for duplicate tags now that the tags are sorted.
		for j := 0; j < commas-1; j++ {
			// get the left and right tags
			_, left := scanTo(buf[indices[j]:], 0, '=')
			_, right := scanTo(buf[indices[j+1]:], 0, '=')

			// If the tags are equal, then there are duplicate tags, and we should abort.
			// If the tags are not sorted, this pass may not find duplicate tags and we
			// need to do a more exhaustive search later.
			if bytes.Equal(left, right) {
				return i, b, fmt.Errorf("duplicate tags")
			}
		}

		return i, b, nil
	}

	return i, buf[start:i], nil
}

// The following constants allow us to specify which state to move to
// next, when scanning sections of a Point.
const (
	tagKeyState = iota
	tagValueState
	fieldsState
)

// scanMeasurement examines the measurement part of a Point, returning
// the next state to move to, and the current location in the buffer.
func scanMeasurement(buf []byte, i int) (int, int, error) {
	// Check first byte of measurement, anything except a comma is fine.
	// It can't be a space, since whitespace is stripped prior to this
	// function call.
	if i >= len(buf) || buf[i] == ',' {
		return -1, i, fmt.Errorf("missing measurement")
	}

	for {
		i++
		if i >= len(buf) {
			// cpu
			return -1, i, fmt.Errorf("missing fields")
		}

		if buf[i-1] == '\\' {
			// Skip character (it's escaped).
			continue
		}

		// Unescaped comma; move onto scanning the tags.
		if buf[i] == ',' {
			return tagKeyState, i + 1, nil
		}

		// Unescaped space; move onto scanning the fields.
		if buf[i] == ' ' {
			// cpu value=1.0
			return fieldsState, i, nil
		}
	}
}

// scanTags examines all the tags in a Point, keeping track of and
// returning the updated indices slice, number of commas and location
// in buf where to start examining the Point fields.
func scanTags(buf []byte, i int, indices []int) (int, int, []int, error) {
	var (
		err    error
		commas int
		state  = tagKeyState
	)

	for {
		switch state {
		case tagKeyState:
			// Grow our indices slice if we have too many tags.
			if commas >= len(indices) {
				newIndics := make([]int, cap(indices)*2)
				copy(newIndics, indices)
				indices = newIndics
			}
			indices[commas] = i
			commas++

			i, err = scanTagsKey(buf, i)
			state = tagValueState // tag value always follows a tag key
		case tagValueState:
			state, i, err = scanTagsValue(buf, i)
		case fieldsState:
			indices[commas] = i + 1
			return i, commas, indices, nil
		}

		if err != nil {
			return i, commas, indices, err
		}
	}
}

// scanTagsKey scans each character in a tag key.
func scanTagsKey(buf []byte, i int) (int, error) {
	// First character of the key.
	if i >= len(buf) || buf[i] == ' ' || buf[i] == ',' || buf[i] == '=' {
		// cpu,{'', ' ', ',', '='}
		return i, fmt.Errorf("missing tag key")
	}

	// Examine each character in the tag key until we hit an unescaped
	// equals (the tag value), or we hit an error (i.e., unescaped
	// space or comma).
	for {
		i++

		// Either we reached the end of the buffer or we hit an
		// unescaped comma or space.
		if i >= len(buf) ||
			((buf[i] == ' ' || buf[i] == ',') && buf[i-1] != '\\') {
			// cpu,tag{'', ' ', ','}
			return i, fmt.Errorf("missing tag value")
		}

		if buf[i] == '=' && buf[i-1] != '\\' {
			// cpu,tag=
			return i + 1, nil
		}
	}
}

// scanTagsValue scans each character in a tag value.
func scanTagsValue(buf []byte, i int) (int, int, error) {
	// Tag value cannot be empty.
	if i >= len(buf) || buf[i] == ',' || buf[i] == ' ' {
		// cpu,tag={',', ' '}
		return -1, i, fmt.Errorf("missing tag value")
	}

	// Examine each character in the tag value until we hit an unescaped
	// comma (move onto next tag key), an unescaped space (move onto
	// fields), or we error out.
	for {
		i++
		if i >= len(buf) {
			// cpu,tag=value
			return -1, i, fmt.Errorf("missing fields")
		}

		// An unescaped equals sign is an invalid tag value.
		if buf[i] == '=' && buf[i-1] != '\\' {
			// cpu,tag={'=', 'fo=o'}
			return -1, i, fmt.Errorf("invalid tag format")
		}

		if buf[i] == ',' && buf[i-1] != '\\' {
			// cpu,tag=foo,
			return tagKeyState, i + 1, nil
		}

		// cpu,tag=foo value=1.0
		// cpu, tag=foo\= value=1.0
		if buf[i] == ' ' && buf[i-1] != '\\' {
			return fieldsState, i, nil
		}
	}
}

func insertionSort(l, r int, buf []byte, indices []int) {
	for i := l + 1; i < r; i++ {
		for j := i; j > l && less(buf, indices, j, j-1); j-- {
			indices[j], indices[j-1] = indices[j-1], indices[j]
		}
	}
}

func less(buf []byte, indices []int, i, j int) bool {
	// This grabs the tag names for i & j, it ignores the values
	_, a := scanTo(buf, indices[i], '=')
	_, b := scanTo(buf, indices[j], '=')
	return bytes.Compare(a, b) < 0
}

// scanFields scans buf, starting at i for the fields section of a point.  It returns
// the ending position and the byte slice of the fields within buf.
func scanFields(buf []byte, i int) (int, []byte, error) {
	start := skipWhitespace(buf, i)
	i = start
	quoted := false

	// tracks how many '=' we've seen
	equals := 0

	// tracks how many commas we've seen
	commas := 0

	for {
		// reached the end of buf?
		if i >= len(buf) {
			break
		}

		// escaped characters?
		if buf[i] == '\\' && i+1 < len(buf) {
			i += 2
			continue
		}

		// If the value is quoted, scan until we get to the end quote
		// Only quote values in the field value since quotes are not significant
		// in the field key
		if buf[i] == '"' && equals > commas {
			quoted = !quoted
			i++
			continue
		}

		// If we see an =, ensure that there is at least on char before and after it
		if buf[i] == '=' && !quoted {
			equals++

			// check for "... =123" but allow "a\ =123"
			if buf[i-1] == ' ' && buf[i-2] != '\\' {
				return i, buf[start:i], fmt.Errorf("missing field key")
			}

			// check for "...a=123,=456" but allow "a=123,a\,=456"
			if buf[i-1] == ',' && buf[i-2] != '\\' {
				return i, buf[start:i], fmt.Errorf("missing field key")
			}

			// check for "... value="
			if i+1 >= len(buf) {
				return i, buf[start:i], fmt.Errorf("missing field value")
			}

			// check for "... value=,value2=..."
			if buf[i+1] == ',' || buf[i+1] == ' ' {
				return i, buf[start:i], fmt.Errorf("missing field value")
			}

			if isNumeric(buf[i+1]) || buf[i+1] == '-' || buf[i+1] == 'N' || buf[i+1] == 'n' {
				var err error
				i, err = scanNumber(buf, i+1)
				if err != nil {
					return i, buf[start:i], err
				}
				continue
			}
			// If next byte is not a double-quote, the value must be a boolean
			if buf[i+1] != '"' {
				var err error
				i, _, err = scanBoolean(buf, i+1)
				if err != nil {
					return i, buf[start:i], err
				}
				continue
			}
		}

		if buf[i] == ',' && !quoted {
			commas++
		}

		// reached end of block?
		if buf[i] == ' ' && !quoted {
			break
		}
		i++
	}

	if quoted {
		return i, buf[start:i], fmt.Errorf("unbalanced quotes")
	}

	// check that all field sections had key and values (e.g. prevent "a=1,b"
	if equals == 0 || commas != equals-1 {
		return i, buf[start:i], fmt.Errorf("invalid field format")
	}

	return i, buf[start:i], nil
}

// scanTime scans buf, starting at i for the time section of a point. It
// returns the ending position and the byte slice of the timestamp within buf
// and and error if the timestamp is not in the correct numeric format.
func scanTime(buf []byte, i int) (int, []byte, error) {
	start := skipWhitespace(buf, i)
	i = start

	for {
		// reached the end of buf?
		if i >= len(buf) {
			break
		}

		// Reached end of block or trailing whitespace?
		if buf[i] == '\n' || buf[i] == ' ' {
			break
		}

		// Handle negative timestamps
		if i == start && buf[i] == '-' {
			i++
			continue
		}

		// Timestamps should be integers, make sure they are so we don't need
		// to actually  parse the timestamp until needed.
		if buf[i] < '0' || buf[i] > '9' {
			return i, buf[start:i], fmt.Errorf("bad timestamp")
		}
		i++
	}
	return i, buf[start:i], nil
}

func isNumeric(b byte) bool {
	return (b >= '0' && b <= '9') || b == '.'
}

// scanNumber returns the end position within buf, start at i after
// scanning over buf for an integer, or float.  It returns an
// error if a invalid number is scanned.
func scanNumber(buf []byte, i int) (int, error) {
	start := i
	var isInt bool

	// Is negative number?
	if i < len(buf) && buf[i] == '-' {
		i++
		// There must be more characters now, as just '-' is illegal.
		if i == len(buf) {
			return i, ErrInvalidNumber
		}
	}

	// how many decimal points we've see
	decimal := false

	// indicates the number is float in scientific notation
	scientific := false

	for {
		if i >= len(buf) {
			break
		}

		if buf[i] == ',' || buf[i] == ' ' {
			break
		}

		if buf[i] == 'i' && i > start && !isInt {
			isInt = true
			i++
			continue
		}

		if buf[i] == '.' {
			// Can't have more than 1 decimal (e.g. 1.1.1 should fail)
			if decimal {
				return i, ErrInvalidNumber
			}
			decimal = true
		}

		// `e` is valid for floats but not as the first char
		if i > start && (buf[i] == 'e' || buf[i] == 'E') {
			scientific = true
			i++
			continue
		}

		// + and - are only valid at this point if they follow an e (scientific notation)
		if (buf[i] == '+' || buf[i] == '-') && (buf[i-1] == 'e' || buf[i-1] == 'E') {
			i++
			continue
		}

		// NaN is an unsupported value
		if i+2 < len(buf) && (buf[i] == 'N' || buf[i] == 'n') {
			return i, ErrInvalidNumber
		}

		if !isNumeric(buf[i]) {
			return i, ErrInvalidNumber
		}
		i++
	}

	if isInt && (decimal || scientific) {
		return i, ErrInvalidNumber
	}

	numericDigits := i - start
	if isInt {
		numericDigits--
	}
	if decimal {
		numericDigits--
	}
	if buf[start] == '-' {
		numericDigits--
	}

	if numericDigits == 0 {
		return i, ErrInvalidNumber
	}

	// It's more common that numbers will be within min/max range for their type but we need to prevent
	// out or range numbers from being parsed successfully.  This uses some simple heuristics to decide
	// if we should parse the number to the actual type.  It does not do it all the time because it incurs
	// extra allocations and we end up converting the type again when writing points to disk.
	if isInt {
		// Make sure the last char is an 'i' for integers (e.g. 9i10 is not valid)
		if buf[i-1] != 'i' {
			return i, ErrInvalidNumber
		}
		// Parse the int to check bounds the number of digits could be larger than the max range
		// We subtract 1 from the index to remove the `i` from our tests
		if len(buf[start:i-1]) >= maxInt64Digits || len(buf[start:i-1]) >= minInt64Digits {
			if _, err := parseIntBytes(buf[start:i-1], 10, 64); err != nil {
				return i, fmt.Errorf("unable to parse integer %s: %s", buf[start:i-1], err)
			}
		}
	} else {
		// Parse the float to check bounds if it's scientific or the number of digits could be larger than the max range
		if scientific || len(buf[start:i]) >= maxFloat64Digits || len(buf[start:i]) >= minFloat64Digits {
			if _, err := parseFloatBytes(buf[start:i], 10); err != nil {
				return i, fmt.Errorf("invalid float")
			}
		}
	}

	return i, nil
}

// scanBoolean returns the end position within buf, start at i after
// scanning over buf for boolean. Valid values for a boolean are
// t, T, true, TRUE, f, F, false, FALSE.  It returns an error if a invalid boolean
// is scanned.
func scanBoolean(buf []byte, i int) (int, []byte, error) {
	start := i

	if i < len(buf) && (buf[i] != 't' && buf[i] != 'f' && buf[i] != 'T' && buf[i] != 'F') {
		return i, buf[start:i], fmt.Errorf("invalid boolean")
	}

	i++
	for {
		if i >= len(buf) {
			break
		}

		if buf[i] == ',' || buf[i] == ' ' {
			break
		}
		i++
	}

	// Single char bool (t, T, f, F) is ok
	if i-start == 1 {
		return i, buf[start:i], nil
	}

	// length must be 4 for true or TRUE
	if (buf[start] == 't' || buf[start] == 'T') && i-start != 4 {
		return i, buf[start:i], fmt.Errorf("invalid boolean")
	}

	// length must be 5 for false or FALSE
	if (buf[start] == 'f' || buf[start] == 'F') && i-start != 5 {
		return i, buf[start:i], fmt.Errorf("invalid boolean")
	}

	// Otherwise
	valid := false
	switch buf[start] {
	case 't':
		valid = bytes.Equal(buf[start:i], []byte("true"))
	case 'f':
		valid = bytes.Equal(buf[start:i], []byte("false"))
	case 'T':
		valid = bytes.Equal(buf[start:i], []byte("TRUE")) || bytes.Equal(buf[start:i], []byte("True"))
	case 'F':
		valid = bytes.Equal(buf[start:i], []byte("FALSE")) || bytes.Equal(buf[start:i], []byte("False"))
	}

	if !valid {
		return i, buf[start:i], fmt.Errorf("invalid boolean")
	}

	return i, buf[start:i], nil

}

// skipWhitespace returns the end position within buf, starting at i after
// scanning over spaces in tags.
func skipWhitespace(buf []byte, i int) int {
	for i < len(buf) {
		if buf[i] != ' ' && buf[i] != '\t' && buf[i] != 0 {
			break
		}
		i++
	}
	return i
}

// scanLine returns the end position in buf and the next line found within
// buf.
func scanLine(buf []byte, i int) (int, []byte) {
	start := i
	quoted := false
	fields := false

	// tracks how many '=' and commas we've seen
	// this duplicates some of the functionality in scanFields
	equals := 0
	commas := 0
	for {
		// reached the end of buf?
		if i >= len(buf) {
			break
		}

		// skip past escaped characters
		if buf[i] == '\\' {
			i += 2
			continue
		}

		if buf[i] == ' ' {
			fields = true
		}

		// If we see a double quote, makes sure it is not escaped
		if fields {
			if !quoted && buf[i] == '=' {
				i++
				equals++
				continue
			} else if !quoted && buf[i] == ',' {
				i++
				commas++
				continue
			} else if buf[i] == '"' && equals > commas {
				i++
				quoted = !quoted
				continue
			}
		}

		if buf[i] == '\n' && !quoted {
			break
		}

		i++
	}

	return i, buf[start:i]
}

// scanTo returns the end position in buf and the next consecutive block
// of bytes, starting from i and ending with stop byte, where stop byte
// has not been escaped.
//
// If there are leading spaces, they are skipped.
func scanTo(buf []byte, i int, stop byte) (int, []byte) {
	start := i
	for {
		// reached the end of buf?
		if i >= len(buf) {
			break
		}

		// Reached unescaped stop value?
		if buf[i] == stop && (i == 0 || buf[i-1] != '\\') {
			break
		}
		i++
	}

	return i, buf[start:i]
}

// scanTo returns the end position in buf and the next consecutive block
// of bytes, starting from i and ending with stop byte.  If there are leading
// spaces, they are skipped.
func scanToSpaceOr(buf []byte, i int, stop byte) (int, []byte) {
	start := i
	if buf[i] == stop || buf[i] == ' ' {
		return i, buf[start:i]
	}

	for {
		i++
		if buf[i-1] == '\\' {
			continue
		}

		// reached the end of buf?
		if i >= len(buf) {
			return i, buf[start:i]
		}

		// reached end of block?
		if buf[i] == stop || buf[i] == ' ' {
			return i, buf[start:i]
		}
	}
}

func scanTagValue(buf []byte, i int) (int, []byte) {
	start := i
	for {
		if i >= len(buf) {
			break
		}

		if buf[i] == ',' && buf[i-1] != '\\' {
			break
		}
		i++
	}
	if i > len(buf) {
		return i, nil
	}
	return i, buf[start:i]
}

func scanFieldValue(buf []byte, i int) (int, []byte) {
	start := i
	quoted := false
	for i < len(buf) {
		// Only escape char for a field value is a double-quote and backslash
		if buf[i] == '\\' && i+1 < len(buf) && (buf[i+1] == '"' || buf[i+1] == '\\') {
			i += 2
			continue
		}

		// Quoted value? (e.g. string)
		if buf[i] == '"' {
			i++
			quoted = !quoted
			continue
		}

		if buf[i] == ',' && !quoted {
			break
		}
		i++
	}
	return i, buf[start:i]
}

func escapeMeasurement(in []byte) []byte {
	for b, esc := range measurementEscapeCodes {
		in = bytes.Replace(in, []byte{b}, esc, -1)
	}
	return in
}

func unescapeMeasurement(in []byte) []byte {
	for b, esc := range measurementEscapeCodes {
		in = bytes.Replace(in, esc, []byte{b}, -1)
	}
	return in
}

func escapeTag(in []byte) []byte {
	for b, esc := range tagEscapeCodes {
		if bytes.IndexByte(in, b) != -1 {
			in = bytes.Replace(in, []byte{b}, esc, -1)
		}
	}
	return in
}

func unescapeTag(in []byte) []byte {
	if bytes.IndexByte(in, '\\') == -1 {
		return in
	}

	for b, esc := range tagEscapeCodes {
		if bytes.IndexByte(in, b) != -1 {
			in = bytes.Replace(in, esc, []byte{b}, -1)
		}
	}
	return in
}

// escapeStringFieldReplacer replaces double quotes and backslashes
// with the same character preceded by a backslash.
// As of Go 1.7 this benchmarked better in allocations and CPU time
// compared to iterating through a string byte-by-byte and appending to a new byte slice,
// calling strings.Replace twice, and better than (*Regex).ReplaceAllString.
var escapeStringFieldReplacer = strings.NewReplacer(`"`, `\"`, `\`, `\\`)

// EscapeStringField returns a copy of in with any double quotes or
// backslashes with escaped values.
func EscapeStringField(in string) string {
	return escapeStringFieldReplacer.Replace(in)
}

// unescapeStringField returns a copy of in with any escaped double-quotes
// or backslashes unescaped.
func unescapeStringField(in string) string {
	if strings.IndexByte(in, '\\') == -1 {
		return in
	}

	var out []byte
	i := 0
	for {
		if i >= len(in) {
			break
		}
		// unescape backslashes
		if in[i] == '\\' && i+1 < len(in) && in[i+1] == '\\' {
			out = append(out, '\\')
			i += 2
			continue
		}
		// unescape double-quotes
		if in[i] == '\\' && i+1 < len(in) && in[i+1] == '"' {
			out = append(out, '"')
			i += 2
			continue
		}
		out = append(out, in[i])
		i++

	}
	return string(out)
}

// NewPoint returns a new point with the given measurement name, tags, fields and timestamp.  If
// an unsupported field value (NaN) or out of range time is passed, this function returns an error.
func NewPoint(name string, tags Tags, fields Fields, t time.Time) (Point, error) {
	key, err := pointKey(name, tags, fields, t)
	if err != nil {
		return nil, err
	}

	return &point{
		key:    key,
		time:   t,
		fields: fields.MarshalBinary(),
	}, nil
}

// pointKey checks some basic requirements for valid points, and returns the
// key, along with an possible error.
func pointKey(measurement string, tags Tags, fields Fields, t time.Time) ([]byte, error) {
	if len(fields) == 0 {
		return nil, ErrPointMustHaveAField
	}

	if !t.IsZero() {
		if err := CheckTime(t); err != nil {
			return nil, err
		}
	}

	for key, value := range fields {
		switch value := value.(type) {
		case float64:
			// Ensure the caller validates and handles invalid field values
			if math.IsNaN(value) {
				return nil, fmt.Errorf("NaN is an unsupported value for field %s", key)
			}
		case float32:
			// Ensure the caller validates and handles invalid field values
			if math.IsNaN(float64(value)) {
				return nil, fmt.Errorf("NaN is an unsupported value for field %s", key)
			}
		}
		if len(key) == 0 {
			return nil, fmt.Errorf("all fields must have non-empty names")
		}
	}

	key := MakeKey([]byte(measurement), tags)
	if len(key) > MaxKeyLength {
		return nil, fmt.Errorf("max key length exceeded: %v > %v", len(key), MaxKeyLength)
	}

	return key, nil
}

// NewPointFromBytes returns a new Point from a marshalled Point.
func NewPointFromBytes(b []byte) (Point, error) {
	p := &point{}
	if err := p.UnmarshalBinary(b); err != nil {
		return nil, err
	}

	// This does some basic validation to ensure there are fields and they
	// can be unmarshalled as well.
	iter := p.FieldIterator()
	var hasField bool
	for iter.Next() {
		if len(iter.FieldKey()) == 0 {
			continue
		}
		hasField = true
		switch iter.Type() {
		case Float:
			_, err := iter.FloatValue()
			if err != nil {
				return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
			}
		case Integer:
			_, err := iter.IntegerValue()
			if err != nil {
				return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
			}
		case String:
			// Skip since this won't return an error
		case Boolean:
			_, err := iter.BooleanValue()
			if err != nil {
				return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
			}
		}
	}

	if !hasField {
		return nil, ErrPointMustHaveAField
	}

	return p, nil
}

// MustNewPoint returns a new point with the given measurement name, tags, fields and timestamp.  If
// an unsupported field value (NaN) is passed, this function panics.
func MustNewPoint(name string, tags Tags, fields Fields, time time.Time) Point {
	pt, err := NewPoint(name, tags, fields, time)
	if err != nil {
		panic(err.Error())
	}
	return pt
}

// Key returns the key (measurement joined with tags) of the point.
func (p *point) Key() []byte {
	return p.key
}

func (p *point) name() []byte {
	_, name := scanTo(p.key, 0, ',')
	return name
}

// Name return the measurement name for the point.
func (p *point) Name() string {
	if p.cachedName != "" {
		return p.cachedName
	}
	p.cachedName = string(escape.Unescape(p.name()))
	return p.cachedName
}

// SetName updates the measurement name for the point.
func (p *point) SetName(name string) {
	p.cachedName = ""
	p.key = MakeKey([]byte(name), p.Tags())
}

// Time return the timestamp for the point.
func (p *point) Time() time.Time {
	return p.time
}

// SetTime updates the timestamp for the point.
func (p *point) SetTime(t time.Time) {
	p.time = t
}

// Round will round the timestamp of the point to the given duration.
func (p *point) Round(d time.Duration) {
	p.time = p.time.Round(d)
}

// Tags returns the tag set for the point.
func (p *point) Tags() Tags {
	if p.cachedTags != nil {
		return p.cachedTags
	}
	p.cachedTags = parseTags(p.key)
	return p.cachedTags
}

func parseTags(buf []byte) Tags {
	if len(buf) == 0 {
		return nil
	}

	pos, name := scanTo(buf, 0, ',')

	// it's an empty key, so there are no tags
	if len(name) == 0 {
		return nil
	}

	tags := make(Tags, 0, bytes.Count(buf, []byte(",")))
	hasEscape := bytes.IndexByte(buf, '\\') != -1

	i := pos + 1
	var key, value []byte
	for {
		if i >= len(buf) {
			break
		}
		i, key = scanTo(buf, i, '=')
		i, value = scanTagValue(buf, i+1)

		if len(value) == 0 {
			continue
		}

		if hasEscape {
			tags = append(tags, NewTag(unescapeTag(key), unescapeTag(value)))
		} else {
			tags = append(tags, NewTag(key, value))
		}

		i++
	}

	return tags
}

// MakeKey creates a key for a set of tags.
func MakeKey(name []byte, tags Tags) []byte {
	// unescape the name and then re-escape it to avoid double escaping.
	// The key should always be stored in escaped form.
	return append(escapeMeasurement(unescapeMeasurement(name)), tags.HashKey()...)
}

// SetTags replaces the tags for the point.
func (p *point) SetTags(tags Tags) {
	p.key = MakeKey([]byte(p.Name()), tags)
	p.cachedTags = tags
}

// AddTag adds or replaces a tag value for a point.
func (p *point) AddTag(key, value string) {
	tags := p.Tags()
	tags = append(tags, Tag{Key: []byte(key), Value: []byte(value)})
	sort.Sort(tags)
	p.cachedTags = tags
	p.key = MakeKey([]byte(p.Name()), tags)
}

// Fields returns the fields for the point.
func (p *point) Fields() (Fields, error) {
	if p.cachedFields != nil {
		return p.cachedFields, nil
	}
	cf, err := p.unmarshalBinary()
	if err != nil {
		return nil, err
	}
	p.cachedFields = cf
	return p.cachedFields, nil
}

// SetPrecision will round a time to the specified precision.
func (p *point) SetPrecision(precision string) {
	switch precision {
	case "n":
	case "u":
		p.SetTime(p.Time().Truncate(time.Microsecond))
	case "ms":
		p.SetTime(p.Time().Truncate(time.Millisecond))
	case "s":
		p.SetTime(p.Time().Truncate(time.Second))
	case "m":
		p.SetTime(p.Time().Truncate(time.Minute))
	case "h":
		p.SetTime(p.Time().Truncate(time.Hour))
	}
}

// String returns the string representation of the point.
func (p *point) String() string {
	if p.Time().IsZero() {
		return string(p.Key()) + " " + string(p.fields)
	}
	return string(p.Key()) + " " + string(p.fields) + " " + strconv.FormatInt(p.UnixNano(), 10)
}

// AppendString appends the string representation of the point to buf.
func (p *point) AppendString(buf []byte) []byte {
	buf = append(buf, p.key...)
	buf = append(buf, ' ')
	buf = append(buf, p.fields...)

	if !p.time.IsZero() {
		buf = append(buf, ' ')
		buf = strconv.AppendInt(buf, p.UnixNano(), 10)
	}

	return buf
}

// StringSize returns the length of the string that would be returned by String().
func (p *point) StringSize() int {
	size := len(p.key) + len(p.fields) + 1

	if !p.time.IsZero() {
		digits := 1 // even "0" has one digit
		t := p.UnixNano()
		if t < 0 {
			// account for negative sign, then negate
			digits++
			t = -t
		}
		for t > 9 { // already accounted for one digit
			digits++
			t /= 10
		}
		size += digits + 1 // digits and a space
	}

	return size
}

// MarshalBinary returns a binary representation of the point.
func (p *point) MarshalBinary() ([]byte, error) {
	if len(p.fields) == 0 {
		return nil, ErrPointMustHaveAField
	}

	tb, err := p.time.MarshalBinary()
	if err != nil {
		return nil, err
	}

	b := make([]byte, 8+len(p.key)+len(p.fields)+len(tb))
	i := 0

	binary.BigEndian.PutUint32(b[i:], uint32(len(p.key)))
	i += 4

	i += copy(b[i:], p.key)

	binary.BigEndian.PutUint32(b[i:i+4], uint32(len(p.fields)))
	i += 4

	i += copy(b[i:], p.fields)

	copy(b[i:], tb)
	return b, nil
}

// UnmarshalBinary decodes a binary representation of the point into a point struct.
func (p *point) UnmarshalBinary(b []byte) error {
	var n int

	// Read key length.
	if len(b) < 4 {
		return io.ErrShortBuffer
	}
	n, b = int(binary.BigEndian.Uint32(b[:4])), b[4:]

	// Read key.
	if len(b) < n {
		return io.ErrShortBuffer
	}
	p.key, b = b[:n], b[n:]

	// Read fields length.
	if len(b) < 4 {
		return io.ErrShortBuffer
	}
	n, b = int(binary.BigEndian.Uint32(b[:4])), b[4:]

	// Read fields.
	if len(b) < n {
		return io.ErrShortBuffer
	}
	p.fields, b = b[:n], b[n:]

	// Read timestamp.
	if err := p.time.UnmarshalBinary(b); err != nil {
		return err
	}
	return nil
}

// PrecisionString returns a string representation of the point. If there
// is a timestamp associated with the point then it will be specified in the
// given unit.
func (p *point) PrecisionString(precision string) string {
	if p.Time().IsZero() {
		return fmt.Sprintf("%s %s", p.Key(), string(p.fields))
	}
	return fmt.Sprintf("%s %s %d", p.Key(), string(p.fields),
		p.UnixNano()/GetPrecisionMultiplier(precision))
}

// RoundedString returns a string representation of the point. If there
// is a timestamp associated with the point, then it will be rounded to the
// given duration.
func (p *point) RoundedString(d time.Duration) string {
	if p.Time().IsZero() {
		return fmt.Sprintf("%s %s", p.Key(), string(p.fields))
	}
	return fmt.Sprintf("%s %s %d", p.Key(), string(p.fields),
		p.time.Round(d).UnixNano())
}

func (p *point) unmarshalBinary() (Fields, error) {
	iter := p.FieldIterator()
	fields := make(Fields, 8)
	for iter.Next() {
		if len(iter.FieldKey()) == 0 {
			continue
		}
		switch iter.Type() {
		case Float:
			v, err := iter.FloatValue()
			if err != nil {
				return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
			}
			fields[string(iter.FieldKey())] = v
		case Integer:
			v, err := iter.IntegerValue()
			if err != nil {
				return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
			}
			fields[string(iter.FieldKey())] = v
		case String:
			fields[string(iter.FieldKey())] = iter.StringValue()
		case Boolean:
			v, err := iter.BooleanValue()
			if err != nil {
				return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
			}
			fields[string(iter.FieldKey())] = v
		}
	}
	return fields, nil
}

// HashID returns a non-cryptographic checksum of the point's key.
func (p *point) HashID() uint64 {
	h := NewInlineFNV64a()
	h.Write(p.key)
	sum := h.Sum64()
	return sum
}

// UnixNano returns the timestamp of the point as nanoseconds since Unix epoch.
func (p *point) UnixNano() int64 {
	return p.Time().UnixNano()
}

// Split will attempt to return multiple points with the same timestamp whose
// string representations are no longer than size. Points with a single field or
// a point without a timestamp may exceed the requested size.
func (p *point) Split(size int) []Point {
	if p.time.IsZero() || len(p.String()) <= size {
		return []Point{p}
	}

	// key string, timestamp string, spaces
	size -= len(p.key) + len(strconv.FormatInt(p.time.UnixNano(), 10)) + 2

	var points []Point
	var start, cur int

	for cur < len(p.fields) {
		end, _ := scanTo(p.fields, cur, '=')
		end, _ = scanFieldValue(p.fields, end+1)

		if cur > start && end-start > size {
			points = append(points, &point{
				key:    p.key,
				time:   p.time,
				fields: p.fields[start : cur-1],
			})
			start = cur
		}

		cur = end + 1
	}

	points = append(points, &point{
		key:    p.key,
		time:   p.time,
		fields: p.fields[start:],
	})

	return points
}

// Tag represents a single key/value tag pair.
type Tag struct {
	Key   []byte
	Value []byte
}

// NewTag returns a new Tag.
func NewTag(key, value []byte) Tag {
	return Tag{
		Key:   key,
		Value: value,
	}
}

// Size returns the size of the key and value.
func (t Tag) Size() int { return len(t.Key) + len(t.Value) }

// Clone returns a shallow copy of Tag.
//
// Tags associated with a Point created by ParsePointsWithPrecision will hold references to the byte slice that was parsed.
// Use Clone to create a Tag with new byte slices that do not refer to the argument to ParsePointsWithPrecision.
func (t Tag) Clone() Tag {
	other := Tag{
		Key:   make([]byte, len(t.Key)),
		Value: make([]byte, len(t.Value)),
	}

	copy(other.Key, t.Key)
	copy(other.Value, t.Value)

	return other
}

// String returns the string reprsentation of the tag.
func (t *Tag) String() string {
	var buf bytes.Buffer
	buf.WriteByte('{')
	buf.WriteString(string(t.Key))
	buf.WriteByte(' ')
	buf.WriteString(string(t.Value))
	buf.WriteByte('}')
	return buf.String()
}

// Tags represents a sorted list of tags.
type Tags []Tag

// NewTags returns a new Tags from a map.
func NewTags(m map[string]string) Tags {
	if len(m) == 0 {
		return nil
	}
	a := make(Tags, 0, len(m))
	for k, v := range m {
		a = append(a, NewTag([]byte(k), []byte(v)))
	}
	sort.Sort(a)
	return a
}

// String returns the string representation of the tags.
func (a Tags) String() string {
	var buf bytes.Buffer
	buf.WriteByte('[')
	for i := range a {
		buf.WriteString(a[i].String())
		if i < len(a)-1 {
			buf.WriteByte(' ')
		}
	}
	buf.WriteByte(']')
	return buf.String()
}

// Size returns the number of bytes needed to store all tags. Note, this is
// the number of bytes needed to store all keys and values and does not account
// for data structures or delimiters for example.
func (a Tags) Size() int {
	var total int
	for _, t := range a {
		total += t.Size()
	}
	return total
}

// Clone returns a copy of the slice where the elements are a result of calling `Clone` on the original elements
//
// Tags associated with a Point created by ParsePointsWithPrecision will hold references to the byte slice that was parsed.
// Use Clone to create Tags with new byte slices that do not refer to the argument to ParsePointsWithPrecision.
func (a Tags) Clone() Tags {
	if len(a) == 0 {
		return nil
	}

	others := make(Tags, len(a))
	for i := range a {
		others[i] = a[i].Clone()
	}

	return others
}

func (a Tags) Len() int           { return len(a) }
func (a Tags) Less(i, j int) bool { return bytes.Compare(a[i].Key, a[j].Key) == -1 }
func (a Tags) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }

// Equal returns true if a equals other.
func (a Tags) Equal(other Tags) bool {
	if len(a) != len(other) {
		return false
	}
	for i := range a {
		if !bytes.Equal(a[i].Key, other[i].Key) || !bytes.Equal(a[i].Value, other[i].Value) {
			return false
		}
	}
	return true
}

// CompareTags returns -1 if a < b, 1 if a > b, and 0 if a == b.
func CompareTags(a, b Tags) int {
	// Compare each key & value until a mismatch.
	for i := 0; i < len(a) && i < len(b); i++ {
		if cmp := bytes.Compare(a[i].Key, b[i].Key); cmp != 0 {
			return cmp
		}
		if cmp := bytes.Compare(a[i].Value, b[i].Value); cmp != 0 {
			return cmp
		}
	}

	// If all tags are equal up to this point then return shorter tagset.
	if len(a) < len(b) {
		return -1
	} else if len(a) > len(b) {
		return 1
	}

	// All tags are equal.
	return 0
}

// Get returns the value for a key.
func (a Tags) Get(key []byte) []byte {
	// OPTIMIZE: Use sort.Search if tagset is large.

	for _, t := range a {
		if bytes.Equal(t.Key, key) {
			return t.Value
		}
	}
	return nil
}

// GetString returns the string value for a string key.
func (a Tags) GetString(key string) string {
	return string(a.Get([]byte(key)))
}

// Set sets the value for a key.
func (a *Tags) Set(key, value []byte) {
	for i, t := range *a {
		if bytes.Equal(t.Key, key) {
			(*a)[i].Value = value
			return
		}
	}
	*a = append(*a, Tag{Key: key, Value: value})
	sort.Sort(*a)
}

// SetString sets the string value for a string key.
func (a *Tags) SetString(key, value string) {
	a.Set([]byte(key), []byte(value))
}

// Delete removes a tag by key.
func (a *Tags) Delete(key []byte) {
	for i, t := range *a {
		if bytes.Equal(t.Key, key) {
			copy((*a)[i:], (*a)[i+1:])
			(*a)[len(*a)-1] = Tag{}
			*a = (*a)[:len(*a)-1]
			return
		}
	}
}

// Map returns a map representation of the tags.
func (a Tags) Map() map[string]string {
	m := make(map[string]string, len(a))
	for _, t := range a {
		m[string(t.Key)] = string(t.Value)
	}
	return m
}

// Merge merges the tags combining the two. If both define a tag with the
// same key, the merged value overwrites the old value.
// A new map is returned.
func (a Tags) Merge(other map[string]string) Tags {
	merged := make(map[string]string, len(a)+len(other))
	for _, t := range a {
		merged[string(t.Key)] = string(t.Value)
	}
	for k, v := range other {
		merged[k] = v
	}
	return NewTags(merged)
}

// HashKey hashes all of a tag's keys.
func (a Tags) HashKey() []byte {
	// Empty maps marshal to empty bytes.
	if len(a) == 0 {
		return nil
	}

	escaped := make(Tags, 0, len(a))
	for _, t := range a {
		ek := escapeTag(t.Key)
		ev := escapeTag(t.Value)

		if len(ev) > 0 {
			escaped = append(escaped, Tag{Key: ek, Value: ev})
		}
	}

	// Extract keys and determine final size.
	sz := len(escaped) + (len(escaped) * 2) // separators
	keys := make([][]byte, len(escaped)+1)
	for i, t := range escaped {
		keys[i] = t.Key
		sz += len(t.Key) + len(t.Value)
	}
	keys = keys[:len(escaped)]
	sort.Sort(byteSlices(keys))

	// Generate marshaled bytes.
	b := make([]byte, sz)
	buf := b
	idx := 0
	for i, k := range keys {
		buf[idx] = ','
		idx++
		copy(buf[idx:idx+len(k)], k)
		idx += len(k)
		buf[idx] = '='
		idx++
		v := escaped[i].Value
		copy(buf[idx:idx+len(v)], v)
		idx += len(v)
	}
	return b[:idx]
}

// CopyTags returns a shallow copy of tags.
func CopyTags(a Tags) Tags {
	other := make(Tags, len(a))
	copy(other, a)
	return other
}

// DeepCopyTags returns a deep copy of tags.
func DeepCopyTags(a Tags) Tags {
	// Calculate size of keys/values in bytes.
	var n int
	for _, t := range a {
		n += len(t.Key) + len(t.Value)
	}

	// Build single allocation for all key/values.
	buf := make([]byte, n)

	// Copy tags to new set.
	other := make(Tags, len(a))
	for i, t := range a {
		copy(buf, t.Key)
		other[i].Key, buf = buf[:len(t.Key)], buf[len(t.Key):]

		copy(buf, t.Value)
		other[i].Value, buf = buf[:len(t.Value)], buf[len(t.Value):]
	}

	return other
}

// Fields represents a mapping between a Point's field names and their
// values.
type Fields map[string]interface{}

// FieldIterator retuns a FieldIterator that can be used to traverse the
// fields of a point without constructing the in-memory map.
func (p *point) FieldIterator() FieldIterator {
	p.Reset()
	return p
}

type fieldIterator struct {
	start, end  int
	key, keybuf []byte
	valueBuf    []byte
	fieldType   FieldType
}

// Next indicates whether there any fields remaining.
func (p *point) Next() bool {
	p.it.start = p.it.end
	if p.it.start >= len(p.fields) {
		return false
	}

	p.it.end, p.it.key = scanTo(p.fields, p.it.start, '=')
	if escape.IsEscaped(p.it.key) {
		p.it.keybuf = escape.AppendUnescaped(p.it.keybuf[:0], p.it.key)
		p.it.key = p.it.keybuf
	}

	p.it.end, p.it.valueBuf = scanFieldValue(p.fields, p.it.end+1)
	p.it.end++

	if len(p.it.valueBuf) == 0 {
		p.it.fieldType = Empty
		return true
	}

	c := p.it.valueBuf[0]

	if c == '"' {
		p.it.fieldType = String
		return true
	}

	if strings.IndexByte(`0123456789-.nNiI`, c) >= 0 {
		if p.it.valueBuf[len(p.it.valueBuf)-1] == 'i' {
			p.it.fieldType = Integer
			p.it.valueBuf = p.it.valueBuf[:len(p.it.valueBuf)-1]
		} else {
			p.it.fieldType = Float
		}
		return true
	}

	// to keep the same behavior that currently exists, default to boolean
	p.it.fieldType = Boolean
	return true
}

// FieldKey returns the key of the current field.
func (p *point) FieldKey() []byte {
	return p.it.key
}

// Type returns the FieldType of the current field.
func (p *point) Type() FieldType {
	return p.it.fieldType
}

// StringValue returns the string value of the current field.
func (p *point) StringValue() string {
	return unescapeStringField(string(p.it.valueBuf[1 : len(p.it.valueBuf)-1]))
}

// IntegerValue returns the integer value of the current field.
func (p *point) IntegerValue() (int64, error) {
	n, err := parseIntBytes(p.it.valueBuf, 10, 64)
	if err != nil {
		return 0, fmt.Errorf("unable to parse integer value %q: %v", p.it.valueBuf, err)
	}
	return n, nil
}

// BooleanValue returns the boolean value of the current field.
func (p *point) BooleanValue() (bool, error) {
	b, err := parseBoolBytes(p.it.valueBuf)
	if err != nil {
		return false, fmt.Errorf("unable to parse bool value %q: %v", p.it.valueBuf, err)
	}
	return b, nil
}

// FloatValue returns the float value of the current field.
func (p *point) FloatValue() (float64, error) {
	f, err := parseFloatBytes(p.it.valueBuf, 64)
	if err != nil {
		return 0, fmt.Errorf("unable to parse floating point value %q: %v", p.it.valueBuf, err)
	}
	return f, nil
}

// Delete deletes the current field.
func (p *point) Delete() {
	switch {
	case p.it.end == p.it.start:
	case p.it.end >= len(p.fields):
		// Remove the trailing comma if there are more than one fields
		p.fields = bytes.TrimSuffix(p.fields[:p.it.start], []byte(","))

	case p.it.start == 0:
		p.fields = p.fields[p.it.end:]
	default:
		p.fields = append(p.fields[:p.it.start], p.fields[p.it.end:]...)
	}

	p.it.end = p.it.start
	p.it.key = nil
	p.it.valueBuf = nil
	p.it.fieldType = Empty
}

// Reset resets the iterator to its initial state.
func (p *point) Reset() {
	p.it.fieldType = Empty
	p.it.key = nil
	p.it.valueBuf = nil
	p.it.start = 0
	p.it.end = 0
}

// MarshalBinary encodes all the fields to their proper type and returns the binary
// represenation
// NOTE: uint64 is specifically not supported due to potential overflow when we decode
// again later to an int64
// NOTE2: uint is accepted, and may be 64 bits, and is for some reason accepted...
func (p Fields) MarshalBinary() []byte {
	var b []byte
	keys := make([]string, 0, len(p))

	for k := range p {
		keys = append(keys, k)
	}

	// Not really necessary, can probably be removed.
	sort.Strings(keys)

	for i, k := range keys {
		if i > 0 {
			b = append(b, ',')
		}
		b = appendField(b, k, p[k])
	}

	return b
}

func appendField(b []byte, k string, v interface{}) []byte {
	b = append(b, []byte(escape.String(k))...)
	b = append(b, '=')

	// check popular types first
	switch v := v.(type) {
	case float64:
		b = strconv.AppendFloat(b, v, 'f', -1, 64)
	case int64:
		b = strconv.AppendInt(b, v, 10)
		b = append(b, 'i')
	case string:
		b = append(b, '"')
		b = append(b, []byte(EscapeStringField(v))...)
		b = append(b, '"')
	case bool:
		b = strconv.AppendBool(b, v)
	case int32:
		b = strconv.AppendInt(b, int64(v), 10)
		b = append(b, 'i')
	case int16:
		b = strconv.AppendInt(b, int64(v), 10)
		b = append(b, 'i')
	case int8:
		b = strconv.AppendInt(b, int64(v), 10)
		b = append(b, 'i')
	case int:
		b = strconv.AppendInt(b, int64(v), 10)
		b = append(b, 'i')
	case uint32:
		b = strconv.AppendInt(b, int64(v), 10)
		b = append(b, 'i')
	case uint16:
		b = strconv.AppendInt(b, int64(v), 10)
		b = append(b, 'i')
	case uint8:
		b = strconv.AppendInt(b, int64(v), 10)
		b = append(b, 'i')
	// TODO: 'uint' should be considered just as "dangerous" as a uint64,
	// perhaps the value should be checked and capped at MaxInt64? We could
	// then include uint64 as an accepted value
	case uint:
		b = strconv.AppendInt(b, int64(v), 10)
		b = append(b, 'i')
	case float32:
		b = strconv.AppendFloat(b, float64(v), 'f', -1, 32)
	case []byte:
		b = append(b, v...)
	case nil:
		// skip
	default:
		// Can't determine the type, so convert to string
		b = append(b, '"')
		b = append(b, []byte(EscapeStringField(fmt.Sprintf("%v", v)))...)
		b = append(b, '"')

	}

	return b
}

type byteSlices [][]byte

func (a byteSlices) Len() int           { return len(a) }
func (a byteSlices) Less(i, j int) bool { return bytes.Compare(a[i], a[j]) == -1 }
func (a byteSlices) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }